Abstract

Studies have shown that fluorescent agents demarcate tumor from surrounding brain tissue and offer intraoperative guidance during resection. However, visualization of fluorescence signal from tumor below the surgical surface or through the appearance of blood in the surgical field is challenging. We have previously described red light imaging techniques for estimating fluorescent depths in turbid media. In this study, we evaluate these methods over a broader range of fluorophore concentrations, and investigate the ability to resolve multiple fluorescent emissions in the same plane or at different depths along the axis of imaging. A tungsten halogen lamp is used as a broadband white light source for reflectance imaging. Fluorescence from Alexa Fluor 647 is excited with a 635 nm diode laser. Reflectance and fluorescence spectral data are gathered between 670 and 720 nm with the use of a liquid crystal tunable filter and recorded on a sCMOS camera. Results show that two fluorescent emissions can be resolved within 2 mm if they are in the same plane or within 3 mm if they are at different depths along the axis of imaging up to 6 mm below the surface.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste, Jeanne Mercier, Leticia Angulo, David W. Roberts, Keith D. Paulsen, Kevin Petrecca, Olivier Daigle, Brian C. Wilson, and Frederic Leblond
Biomed. Opt. Express 6(12) 5063-5074 (2015)

Liquid-crystal tunable filter spectral imaging for brain tumor demarcation

Steven C. Gebhart, Reid C. Thompson, and Anita Mahadevan-Jansen
Appl. Opt. 46(10) 1896-1910 (2007)

Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium

David Hall, Guobin Ma, Frédéric Lesage, and Yong Wang
Opt. Lett. 29(19) 2258-2260 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
    [Crossref] [PubMed]
  2. W. Stummer and M. A. Kamp, “The importance of surgical resection in malignant glioma,” Curr. Opin. Neurol. 22(6), 645–649 (2009).
    [Crossref] [PubMed]
  3. M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
    [Crossref] [PubMed]
  4. D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
    [Crossref] [PubMed]
  5. X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).
  6. S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
    [Crossref] [PubMed]
  7. S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
    [Crossref]
  8. Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
    [Crossref] [PubMed]
  9. D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
    [Crossref] [PubMed]
  10. M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
    [Crossref] [PubMed]
  11. R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).
  12. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
    [Crossref] [PubMed]
  13. P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
    [Crossref] [PubMed]
  14. K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
    [Crossref] [PubMed]
  15. W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
    [Crossref] [PubMed]
  16. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).
  17. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
    [Crossref]
  18. P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
    [Crossref] [PubMed]
  19. J. Swartling, J. Svensson, D. Bengtsson, K. Terike, and S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44(10), 1934–1941 (2005).
    [Crossref] [PubMed]
  20. L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:.
    [Crossref]
  21. F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
    [Crossref] [PubMed]
  22. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  23. B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
    [Crossref] [PubMed]

2015 (2)

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

2014 (1)

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

2013 (3)

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

2012 (1)

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

2011 (4)

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

2009 (2)

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

W. Stummer and M. A. Kamp, “The importance of surgical resection in malignant glioma,” Curr. Opin. Neurol. 22(6), 645–649 (2009).
[Crossref] [PubMed]

2008 (2)

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
[Crossref]

2006 (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (2)

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

2000 (1)

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

1998 (1)

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

1991 (1)

L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:.
[Crossref]

Abi-Said, D.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Ancukiewicz, M.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Andersson-Engels, S.

Attenello, F. J.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Bengtsson, D.

Bise, K.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Bourne, S. K.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Brem, H.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Burger, P. C.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Cable, M. D.

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Chaichana, K. L.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Conde, O. M.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

Curry, W. T.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Davis, S. C.

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

DeMonte, F.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Erkmen, K.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

Fan, X.

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Foschum, F.

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
[Crossref]

Fourney, D. R.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Frosch, M. P.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Goetz, C.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Gokaslan, Z. L.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Habibollahi, P.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

Harris, B. T.

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

Hartov, A.

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

Hassenbusch, S. J.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Heidari, P.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

Hess, K.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Holland, E.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Jermyn, M.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

Ji, S.

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

Kamp, M. A.

W. Stummer and M. A. Kamp, “The importance of surgical resection in malignant glioma,” Curr. Opin. Neurol. 22(6), 645–649 (2009).
[Crossref] [PubMed]

Kanick, S. C.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

Kennedy, F. E.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

Kienle, A.

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
[Crossref]

Kim, A.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

Kolste, K. K.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

Kwon, C. S.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Lacroix, M.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Lang, F. F.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Leblond, F.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

Liu, F.

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

Mahmood, U.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

McCutcheon, I. E.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

McGirt, M. J.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Meinel, T.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Michael, C.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Michels, R.

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
[Crossref]

Miga, M. I.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

Miller, D.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Moser, R.

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

Nelson, M. B.

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Nguyen, Q. T.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Novotny, A.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Olivi, A.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Ovanesyan, Z.

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Paulsen, K.

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

Paulsen, K. D.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

Pichlmeier, U.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Pogue, B. W.

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

Quinoñes-Hinojosa, A.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Reulen, H. J.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Rice, B. W.

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

Roberts, D.

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

Roberts, D. W.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

Sawaya, R.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Sheth, R.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

Sheth, S.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

Sheth, S. A.

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Shi, W.

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

Simmons, N. E.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

Smith, T. W.

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

Snuderl, M.

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Soille, P.

L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:.
[Crossref]

Stepp, H.

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Stummer, W.

W. Stummer and M. A. Kamp, “The importance of surgical resection in malignant glioma,” Curr. Opin. Neurol. 22(6), 645–649 (2009).
[Crossref] [PubMed]

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

Svensson, J.

Swartling, J.

Terike, K.

Than, K.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Tosteson, T. D.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

Tsien, R. Y.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Valdes, P. A.

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

Valdés, P. A.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

Vincent, L.

L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:.
[Crossref]

Weingart, J. D.

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

Whitson, W. J.

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

Wiestler, O. D.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

Wirth, D.

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Yaroslavsky, A. N.

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Zanella, F.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Brain Pathol. (1)

M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol. 23(1), 73–81 (2013).
[Crossref] [PubMed]

Curr. Opin. Neurol. (1)

W. Stummer and M. A. Kamp, “The importance of surgical resection in malignant glioma,” Curr. Opin. Neurol. 22(6), 645–649 (2009).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:.
[Crossref]

J. Biomed. Opt. (3)

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16(11), 116007 (2011).
[Crossref] [PubMed]

B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001).
[Crossref] [PubMed]

K. K. Kolste, S. C. Kanick, P. A. Valdés, M. Jermyn, B. C. Wilson, D. W. Roberts, K. D. Paulsen, and F. Leblond, “Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance,” J. Biomed. Opt. 20(2), 026002 (2015),.
[Crossref] [PubMed]

J. Neurosurg. (3)

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, “Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients,” J. Neurosurg. 93(6), 1003–1013 (2000).

M. Lacroix, D. Abi-Said, D. R. Fourney, Z. L. Gokaslan, W. Shi, F. DeMonte, F. F. Lang, I. E. McCutcheon, S. J. Hassenbusch, E. Holland, K. Hess, C. Michael, D. Miller, and R. Sawaya, “A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival,” J. Neurosurg. 95(2), 190–198 (2001).
[Crossref] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115(1), 11–17 (2011).
[Crossref] [PubMed]

J. Nucl. Med. (1)

R. Sheth, P. Heidari, P. Habibollahi, S. Sheth, M. Snuderl, and U. Mahmood, “Optical imaging of c-Met expression in glioblastoma for intra-operative tumor resection guidance,” J. Nucl. Med. 54, 642 (2013).

Lancet Oncol. (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Med. Image Anal. (1)

S. Ji, X. Fan, D. W. Roberts, A. Hartov, and K. D. Paulsen, “Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration,” Med. Image Anal. 18(7), 1169–1183 (2014).
[Crossref] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Neurosurgery (3)

M. J. McGirt, K. L. Chaichana, F. J. Attenello, J. D. Weingart, K. Than, P. C. Burger, A. Olivi, H. Brem, and A. Quinoñes-Hinojosa, “Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas,” Neurosurgery 63(4), 700–708 (2008).
[Crossref] [PubMed]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–760 (1998).
[Crossref] [PubMed]

W. J. Whitson, P. A. Valdes, B. T. Harris, K. D. Paulsen, and D. W. Roberts, “Confocal microscopy for the histological fluorescence pattern of a recurrent atypical meningioma: case report,” Neurosurgery 68(6), E1768–E1773 (2011).
[Crossref] [PubMed]

Opt. Express (1)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 2304–2314 (2008).
[Crossref]

Phys. Med. Biol. (2)

D. Wirth, T. W. Smith, R. Moser, and A. N. Yaroslavsky, “Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy,” Phys. Med. Biol. 60(7), 3003–3011 (2015).
[Crossref] [PubMed]

F. Leblond, Z. Ovanesyan, S. C. Davis, P. A. Valdés, A. Kim, A. Hartov, B. C. Wilson, B. W. Pogue, K. D. Paulsen, and D. W. Roberts, “Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging,” Phys. Med. Biol. 56(21), 6823–6837 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

S. Ji, F. Liu, X. Fan, A. Hartov, D. Roberts, and K. Paulsen, “Model-based brain shift compensation in image-guided neurosurgery,” Proc. SPIE 7261, 72612E (2009).
[Crossref]

X. Fan, S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Registering stereovision surface with preoperative magnetic resonance images for brain shift compensation,” Proc. SPIE 8316, 83161C (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(A) Schematic of the imaging system and typical phantom set up. (B) Photograph of the same. LCTF is the liquid crystal tunable filter. A custom holder was machined to mount the longpass filter, LCTF and camera to a side port of the surgical microscope.

Fig. 2
Fig. 2

Comparison of absorption spectra of oxygenated blood and metHb. Since experiments involved a homogeneous phantom, vessel size was not considered when calculating the absorption coefficient of blood. The concentrations of metHb and blood were 3.66 mg/mL.

Fig. 3
Fig. 3

Emission spectra of AF647 and extinction coefficient of metHb, 670 nm and 700 nm were the wavelengths chosen to calculate the DWFR.

Fig. 4
Fig. 4

Diagram of phantom experiments evaluated. (A) Experiment 1: varying AF647 concentration, Ci, and depth, d, of the inclusion. (B) Experiment 2: varying radius, r, and spacing, s, of inclusions at increasing depth, d. (C) Experiment 3: varying depth (d1 and d2) of inclusions separated by 15 mm laterally and 3 mm in relative depth (d2 – d1).

Fig. 5
Fig. 5

Maximum depth detection for different concentrations of AF647 over the range of absorption coefficients tested. (A) corresponds to the lowest reduced scattering coefficient tested (μs’ = 0.5 mm−1) and (B) corresponds to the highest scattering coefficient tested (μs’ = 2.5 mm−1).

Fig. 6
Fig. 6

Tomographic depth map for μs’ = 0.5 mm−1 and μa = 0.001 mm−1. Panels (consisting of 4 individual columns) show detection limits and estimation accuracies for four AF647 concentrations: (A) 0.01 μg/mL (B) 0.1 μg/mL (C) 1.0 μg/mL (D) 10 μg/mL. Each column within a panel summarizes the accuracies of the 3 estimation techniques and shows the raw fluorescence image at 700 nm. Depth increases with each row. Color indicates whether the depth is accurately predicted (green), under-predicted (blue) or over-predicted (red). Below each panel is a plot of the estimated depth at the center of the inclusion as a function of the true depth for each estimation technique.

Fig. 7
Fig. 7

Sample images of phantoms with inclusions that are 2mm in diameter spaced 4mm apart. The inclusions are at depths, d = 6mm in (A) and d = 7mm in (B). After applying the watershed transform, the two inclusions from A result in unique watershed regions, (C). The two inclusions in (B) result in the same watershed, (D).The lines in (C) and (D) indicate the locations of the centers of the two inclusions.

Fig. 8
Fig. 8

Maximum depths at which the two inclusions can be differentiated as a function of their lateral separation for different inclusion radii for (A) μs’ = 1.0 mm−1 and μa = 0.001 mm−1 (B) μs’ = 1.0 mm−1 and μa = 0.01 mm−1 and (C) μs’ = 2.0 mm−1 and μa = 0.001 mm−1. (D) Tomographic depth maps for μs’ = 1 mm−1 and μa = 0.01 mm−1, and inclusion radius of 5 mm. Panels show accuracies and raw fluorescence intensities at 700 nm for 4 separation distances, s. Depth increases with each row. Color indicates if the depth is accurately predicted (green), under-predicted (blue) or over-predicted (red).

Fig. 9
Fig. 9

Depth estimations from Technique 2 for deeper and shallower inclusions in Experiment 3. Bulk media optical properties were μs’ = 1.0 mm−1 and μa = 0.001 mm−1 and the concentration of AF647 used in the inclusions was 1.0 μg/ml.

Fig. 10
Fig. 10

(A) Diagram of fluorescent inclusion. (B) Sample image with region of interest determined by size of inclusion overlayed

Fig. 11
Fig. 11

Depth at which an inclusion provides the fluenc ratio (emitted Fluorescence intensity:initial source intensity) for inclusions of PpIX in a solution using blood as an absorber(dashed line) and AF647 in a solution using methemoglobin as the absorber(dashed line). Drawing a vertical line (dotted line) for a given fluence ratio determines the depth at which the matching concentration of AF647 or PpIX can be detected.

Tables (2)

Tables Icon

Table 1 Summary of three techniques to calculate m for recovering depth information [12].

Tables Icon

Table 2 Absolute error in depth estimation measured in mm for the three depth experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=  I 0 4πDr e r δ
F= Q AF ε AF ( λ ex ) Q PpIX ε PpIX ( λ ex )