Abstract

Retinal vascular occlusive diseases represent a major form of vision loss worldwide. Rodent models of these diseases have traditionally relied upon a slit-lamp biomicroscope to help visualize the fundus and subsequently aid delivery of high-power laser shots to a target vessel. Here we describe a multimodal imaging system that can produce, image, and monitor retinal vascular occlusions in rodents. The system combines a spectral-domain optical coherence tomography system for cross-sectional structural imaging and three-dimensional angiography, and a fluorescence scanning laser ophthalmoscope for Rose Bengal monitoring and high-power laser delivery to a target vessel. This multimodal system facilitates the precise production of occlusions in the branched retinal veins, central retinal vein, and branched retinal arteries. Additionally, changes in the retinal morphology and retinal vasculature can be longitudinally documented. With our device, retinal vascular occlusions can be easily and consistently created, which paves the way for futures studies on their pathophysiology and therapeutic targets.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Handheld optical coherence tomography angiography

Jianlong Yang, Liang Liu, J. Peter Campbell, David Huang, and Gangjun Liu
Biomed. Opt. Express 8(4) 2287-2300 (2017)

Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers

Taeyoon Son, Benquan Wang, Damber Thapa, Yiming Lu, Yanjun Chen, Dingcai Cao, and Xincheng Yao
Biomed. Opt. Express 7(8) 3151-3162 (2016)

Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics

Matthias Salas, Marco Augustin, Laurin Ginner, Abhishek Kumar, Bernhard Baumann, Rainer Leitgeb, Wolfgang Drexler, Sonja Prager, Julia Hafner, Ursula Schmidt-Erfurth, and Michael Pircher
Biomed. Opt. Express 8(1) 207-222 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
    [Crossref] [PubMed]
  2. S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).
  3. C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
    [Crossref] [PubMed]
  4. M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
    [Crossref] [PubMed]
  5. M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
    [Crossref] [PubMed]
  6. E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
    [Crossref] [PubMed]
  7. A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
    [Crossref] [PubMed]
  8. Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
    [Crossref] [PubMed]
  9. Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
    [Crossref] [PubMed]
  10. Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
    [Crossref] [PubMed]
  11. O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
    [Crossref] [PubMed]
  12. W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
    [Crossref] [PubMed]
  13. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
    [Crossref] [PubMed]
  14. P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
    [Crossref] [PubMed]
  15. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [Crossref] [PubMed]
  16. K. Komar, P. Stremplewski, M. Motoczyńska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express 4(11), 2683–2695 (2013).
    [Crossref] [PubMed]
  17. W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
    [Crossref] [PubMed]
  18. A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
    [Crossref] [PubMed]
  19. D. Kleinfeld, B. Friedman, P. D. Lyden, and A. Y. Shih, “Targeted occlusion to surface and deep vessels in neocortex via linear and nonlinear optical absorption,” in Animal Models of Acute Neurological Injuries (Springer, 2009), pp. 169–185.
  20. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  21. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19(22), 21258–21270 (2011).
    [Crossref] [PubMed]
  22. R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
    [Crossref] [PubMed]
  23. M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
    [Crossref]
  24. S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
    [Crossref] [PubMed]
  25. A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
    [Crossref] [PubMed]
  26. O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
    [Crossref] [PubMed]
  27. A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
    [Crossref] [PubMed]
  28. H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
    [Crossref] [PubMed]
  29. S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
    [Crossref] [PubMed]
  30. S. S. Hayreh, “Prevalent misconceptions about acute retinal vascular occlusive disorders,” Prog. Retin. Eye Res. 24(4), 493–519 (2005).
    [Crossref] [PubMed]
  31. W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
    [Crossref] [PubMed]
  32. S. M. Linden and D. C. Neckers, “Type I and type II sensitizers based on Rose Bengal onium salts,” Photochem. Photobiol. 47(4), 543–550 (1988).
    [Crossref] [PubMed]
  33. R. E. Kellogg and R. G. Bennett, “Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies,” J. Chem. Phys. 41(10), 3042–3045 (1964).
    [Crossref]

2016 (2)

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

2015 (6)

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
[Crossref] [PubMed]

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

2014 (1)

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

2013 (3)

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

K. Komar, P. Stremplewski, M. Motoczyńska, M. Szkulmowski, and M. Wojtkowski, “Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus,” Biomed. Opt. Express 4(11), 2683–2695 (2013).
[Crossref] [PubMed]

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

2009 (2)

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

2007 (2)

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

2005 (2)

S. S. Hayreh, “Prevalent misconceptions about acute retinal vascular occlusive disorders,” Prog. Retin. Eye Res. 24(4), 493–519 (2005).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

2004 (1)

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

2003 (1)

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

2002 (1)

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

1988 (2)

S. M. Linden and D. C. Neckers, “Type I and type II sensitizers based on Rose Bengal onium salts,” Photochem. Photobiol. 47(4), 543–550 (1988).
[Crossref] [PubMed]

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

1987 (1)

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

1979 (1)

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

1964 (1)

R. E. Kellogg and R. G. Bennett, “Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies,” J. Chem. Phys. 41(10), 3042–3045 (1964).
[Crossref]

Adhi, M.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Agca, C.

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Appukuttan, B.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

Atchaneeyasakul, L. O.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

Balderas-Mata, S.

Bennett, R. G.

R. E. Kellogg and R. G. Bennett, “Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies,” J. Chem. Phys. 41(10), 3042–3045 (1964).
[Crossref]

Bird, A. C.

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Boas, D. A.

Bringmann, A.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Brouland, J. P.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

Burke, J. M.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Burns, M. E.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Calippe, B.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Chen, J.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Cheung, N.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Cho, C. H.

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

Choi, W.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Crutchley, R. J.

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

de Carlo, T. E.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

DeRosa, M. C.

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

Dobre, G. M.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Dollery, C. T.

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Dominguez, E.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Duker, J. S.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Dutton, J. J.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

Dysli, C.

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Ebneter, A.

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Evans, L.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Fawzi, A. A.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
[Crossref] [PubMed]

Fortune, B.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Fredrick, T.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Friedman, B.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Fu, Z.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Fujimoto, J. G.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Garcia, P.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Gaudric, A.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Genevois, O.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Giannakaki-Zimmermann, H.

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

Gong, Y.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Guillonneau, X.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Hamilton, A. M.

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Hatchell, D. L.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

Hatchell, M. C.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

Hathaway, M.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Hayreh, S. S.

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

S. S. Hayreh, “Prevalent misconceptions about acute retinal vascular occlusive disorders,” Prog. Retin. Eye Res. 24(4), 493–519 (2005).
[Crossref] [PubMed]

He, X. J.

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Hernandez, E.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Hollborn, M.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

Iandiev, I.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Jayaraman, V.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Jia, Y.

Jian, Y.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Jiao, S.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Jones, S. M.

Juarez, R. A.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Karl, A.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Kellogg, R. E.

R. E. Kellogg and R. G. Bennett, “Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies,” J. Chem. Phys. 41(10), 3042–3045 (1964).
[Crossref]

Kim, D. Y.

Kleinfeld, D.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Kocaoglu, O. P.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Kohen, L.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Kohner, E. M.

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Kokona, D.

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

Komar, K.

Kowalski, J. W.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Kraus, M. F.

Kuai, D.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Lam, K. S.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Laurent, P.

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Lee, B.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Lee, J.

Li, H.

Li, J.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Li, X. X.

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Li, Y.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Lim, L.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Linden, S. M.

S. M. Linden and D. C. Neckers, “Type I and type II sensitizers based on Rose Bengal onium salts,” Photochem. Photobiol. 47(4), 543–550 (1988).
[Crossref] [PubMed]

Linsenmeier, R. A.

Liu, C. H.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Liu, J. J.

Liu, T.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Liu, W.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
[Crossref] [PubMed]

Lu, C. D.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Lyden, P. D.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Main, J.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Manns, F.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

McAdoo, T.

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

McFarland, T.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

McIntosh, R. L.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Mitchell, P.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Morss, P.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Mose, K.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Motoczynska, M.

Moult, E. M.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Murphy, T. H.

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Nanda, S. K.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

Neckers, D. C.

S. M. Linden and D. C. Neckers, “Type I and type II sensitizers based on Rose Bengal onium salts,” Photochem. Photobiol. 47(4), 543–550 (1988).
[Crossref] [PubMed]

Nguyen, H.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Nguyen, J.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Nishimura, N.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Olivier, S. S.

Pannicke, T.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Paques, M.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Parel, J. M.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Pedro, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Pilli, S.

Podoleanu, A. G.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Potsaid, B.

Pugh, E. N.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Radhakrishnan, H.

Raoul, W.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Rehak, M.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Reichenbach, A.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Rogers, J.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Rogers, S.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Rosen, D.

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Rosen, R. B.

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

Rosenfeld, P. J.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Royster, A. J.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

Saba, N.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Sahel, J.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

Sahel, J. A.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Sarunic, M. V.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Schaffer, C. B.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Sennlaub, F.

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

Sercombe, R.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Seylaz, J.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

Shah, R. S.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
[Crossref] [PubMed]

Shih, A. Y.

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Shu, X.

Simonutti, M.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

Skondra, D.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

Smith, L. E.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Soetikno, B. T.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

Song, W.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Srinivasan, V.

Stout, J. T.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

Stremplewski, P.

Subhash, H.

Sun, C.

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Sun, Y.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Szkulmowski, M.

Tadayoni, R.

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Tan, O.

Tao, Y.

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Tian, K.

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

Tiedeman, J. S.

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

Tokayer, J.

Uhlhorn, S. R.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Vicaut, E.

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Waheed, N. K.

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

Wallace, P.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Wang, J. J.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Wang, X.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Wang, Y.

Wei, Q.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Werner, J. S.

Wiedemann, P.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Will, R.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

Wilson, D.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Wojtkowski, M.

Wolf, S.

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

Wong, T. Y.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Wurm, A.

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

Yi, J.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

Zam, A.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Zawadzki, R. J.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

Zhang, H. F.

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

W. Liu, H. Li, R. S. Shah, X. Shu, R. A. Linsenmeier, A. A. Fawzi, and H. F. Zhang, “Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization,” Opt. Lett. 40(24), 5782–5785 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

Zhang, P.

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

Zhang, Q.

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

Zinkernagel, M. S.

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Arch. Ophthalmol. (2)

S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, and T. McAdoo, “A new method for vascular occlusion. Photochemical initiation of thrombosis,” Arch. Ophthalmol. 105(8), 1121–1124 (1987).
[Crossref] [PubMed]

A. J. Royster, S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, and M. C. Hatchell, “Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina,” Arch. Ophthalmol. 106(11), 1608–1614 (1988).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

A. M. Hamilton, E. M. Kohner, D. Rosen, A. C. Bird, and C. T. Dollery, “Experimental retinal branch vein occlusion in rhesus monkeys. I. Clinical appearances,” Br. J. Ophthalmol. 63(6), 377–387 (1979).
[Crossref] [PubMed]

Cold Spring Harb. Protoc. (1)

A. Y. Shih, N. Nishimura, J. Nguyen, B. Friedman, P. D. Lyden, C. B. Schaffer, and D. Kleinfeld, “Optically induced occlusion of single blood vessels in rodent neocortex,” Cold Spring Harb. Protoc. 2013(12), 1153–1160 (2013).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

Curr. Eye Res. (1)

Y. Zhang, B. Fortune, L. O. Atchaneeyasakul, T. McFarland, K. Mose, P. Wallace, J. Main, D. Wilson, B. Appukuttan, and J. T. Stout, “Natural history and histology in a rat model of laser-induced photothrombotic retinal vein occlusion,” Curr. Eye Res. 33(4), 365–376 (2008).
[Crossref] [PubMed]

Exp. Eye Res. (1)

C. Sun, X. X. Li, X. J. He, Q. Zhang, and Y. Tao, “Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion,” Exp. Eye Res. 113, 105–116 (2013).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

M. Rehak, M. Hollborn, I. Iandiev, T. Pannicke, A. Karl, A. Wurm, L. Kohen, A. Reichenbach, P. Wiedemann, and A. Bringmann, “Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat,” Invest. Ophthalmol. Vis. Sci. 50(5), 2359–2367 (2009).
[Crossref] [PubMed]

M. Paques, R. Tadayoni, R. Sercombe, P. Laurent, O. Genevois, A. Gaudric, and E. Vicaut, “Structural and hemodynamic analysis of the mouse retinal microcirculation,” Invest. Ophthalmol. Vis. Sci. 44(11), 4960–4967 (2003).
[Crossref] [PubMed]

Y. Zhang, C. H. Cho, L. O. Atchaneeyasakul, T. McFarland, B. Appukuttan, and J. T. Stout, “Activation of the mitochondrial apoptotic pathway in a rat model of central retinal artery occlusion,” Invest. Ophthalmol. Vis. Sci. 46(6), 2133–2139 (2005).
[Crossref] [PubMed]

R. S. Shah, B. T. Soetikno, J. Yi, W. Liu, D. Skondra, H. F. Zhang, and A. A. Fawzi, “Visible-Light Optical Coherence Tomography Angiography for Monitoring Laser-Induced Choroidal Neovascularization in Mice,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT86–OCT95 (2016).
[Crossref] [PubMed]

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[Crossref] [PubMed]

R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, G. M. Dobre, and A. G. Podoleanu, “Simultaneous OCT/SLO/ICG imaging,” Invest. Ophthalmol. Vis. Sci. 50(2), 851–860 (2009).
[Crossref] [PubMed]

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz, A. Gaudric, J. P. Brouland, J. Sahel, and E. Vicaut, “Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats,” Invest. Ophthalmol. Vis. Sci. 45(2), 594–600 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

P. Zhang, A. Zam, Y. Jian, X. Wang, Y. Li, K. S. Lam, M. E. Burns, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature,” J. Biomed. Opt. 20(12), 126005 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. 17(6), 061206 (2012).
[Crossref] [PubMed]

J. Chem. Phys. (1)

R. E. Kellogg and R. G. Bennett, “Radiationless Intermolecular Energy Transfer. III. Determination of Phosphorescence Efficiencies,” J. Chem. Phys. 41(10), 3042–3045 (1964).
[Crossref]

Ophthalmology (2)

W. Choi, E. M. Moult, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, T. E. de Carlo, V. Jayaraman, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy,” Ophthalmology 122(12), 2532–2544 (2015).
[Crossref] [PubMed]

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, T. Y. Wong, and International Eye Disease Consortium, “The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117, 313–319 (2010).

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. (1)

S. M. Linden and D. C. Neckers, “Type I and type II sensitizers based on Rose Bengal onium salts,” Photochem. Photobiol. 47(4), 543–550 (1988).
[Crossref] [PubMed]

PLoS Biol. (1)

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

PLoS One (3)

Y. Gong, J. Li, Y. Sun, Z. Fu, C. H. Liu, L. Evans, K. Tian, N. Saba, T. Fredrick, P. Morss, J. Chen, and L. E. Smith, “Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice,” PLoS One 10(7), e0132643 (2015).
[Crossref] [PubMed]

E. Dominguez, W. Raoul, B. Calippe, J. A. Sahel, X. Guillonneau, M. Paques, and F. Sennlaub, “Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization,” PLoS One 10(7), e0132644 (2015).
[Crossref] [PubMed]

A. Ebneter, C. Agca, C. Dysli, and M. S. Zinkernagel, “Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion,” PLoS One 10(3), e0119046 (2015).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

S. S. Hayreh, “Prevalent misconceptions about acute retinal vascular occlusive disorders,” Prog. Retin. Eye Res. 24(4), 493–519 (2005).
[Crossref] [PubMed]

Transl. Vis. Sci. Technol. (1)

H. Giannakaki-Zimmermann, D. Kokona, S. Wolf, A. Ebneter, and M. S. Zinkernagel, “Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography,” Transl. Vis. Sci. Technol. 5(4), 11 (2016).
[Crossref] [PubMed]

Other (1)

D. Kleinfeld, B. Friedman, P. D. Lyden, and A. Y. Shih, “Targeted occlusion to surface and deep vessels in neocortex via linear and nonlinear optical absorption,” in Animal Models of Acute Neurological Injuries (Springer, 2009), pp. 169–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the combined OCT and SLO system. CW Laser: continuous wave laser. DC: dichroic mirror. FP: fiber port collimator. M: mirror. ND: neutral density filter wheel. PC: polarization controller. SLED: superluminescent light emitting diode. Focal lengths of lenses L1, L2, L3, L4, L5 were 75 mm, 15 mm, 40 mm, 50 mm, and 30 mm, respectively.

Fig. 2
Fig. 2

Key steps of the retinal vascular occlusion protocol.

Fig. 3
Fig. 3

Producing a branched retinal vein occlusion. (A) Pre-occlusion RB angiogram. Red box indicates scanning area for occlusion. (B) Mean RB fluorescence signal during occlusion corresponding to red box in A. Insets 1 to 4 show frames at points 1 to 4 on the curve. Laser power was 25 mW at the pupil. (C) Post-occlusion RB angiogram. (D) Pre-occlusion OCTA of a retinal vein. (E) Post-occlusion OCTA. White solid circles in D and E indicate the site of occlusion. White dashed region indicates area of capillary non-perfusion. (F) Pre-occlusion OCT B-scan at the white dashed line in D. (G) Post-occlusion OCT B-scan at the white dashed line in E. Yellow arrows in F and G indicate vessel location. Horizontal scale bars are 500 µm. Vertical scale bars are 100 µm. a: artery; v: vein.

Fig. 4
Fig. 4

Longitudinal OCTA of branched vein occlusion. (A) Pre-occlusion RB angiogram. (B) Post-occlusion RB angiogram. Yellow arrow indicates dilated, tortuous vein. Magenta arrow indicates vascular leakage. Yellow circles in A and B indicates site targeted for occlusion. (C) Montage of 9 OCTA images before vein occlusion. a and v denote arteries and veins respectively. White circle denotes the targeted site of occlusion on the 9 o’ clock vein. (D) Montage after vein occlusion. (E) Montage on day 1 after the vein occlusion. White dotted regions in B and C denote areas of capillary non-perfusion. (F,G,H) OCT B-scans at the ONH before, after, and at day 1 for a vein occlusion. White dashed lines in C,D, and E denote the B-scan position for F,G, and H. Horizontal scale bars are 500 µm. Vertical scale bars are 100 µm.

Fig. 5
Fig. 5

Longitudinal OCTA of central vein occlusion. (A) Pre-occlusion RB angiogram. Yellow circle indicates site of occlusion. (B) Post-occlusion RB angiogram. (C) Post-occlusion RB angiogram positioned away from ONH. (D) Montage of 3 OCTA images pre-occlusion. “a” and “v” label the arteries and veins, respectively. White solid circle shows the target site for vessel occlusion. (E) Montage of 3 OCTA images post-occlusion. White dotted region denotes area of capillary non-perfusion. (F) Montage of 3 OCTA images at day 1. (G,H,I) OCT B-scans at the white dashed lines in D,E,F, respectively. Horizontal scale bars are 500 µm. Vertical scale bars are 100 µm.

Fig. 6
Fig. 6

Longitudinal OCTA of branched artery occlusion (A) Pre-occlusion RB angiogram. Yellow circle indicates site of occlusion. (B) Post-occlusion RB angiogram. (C) Montage of 3 pre-occlusion OCTA images. White solid circle denotes the site of occlusion. White solid arrow indicates an arterial branch point. a: artery; v: vein; (D) Montage of 3 post-occlusion OCTA images. White dashed region denotes area of capillary non-perfusion. White solid arrow indicates an arterial branch point (E) Montage of 3 OCTA images on day 1. White dashed region denotes area of capillary non-perfusion. Scale bars: 500 µm.