Abstract

We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope

Yang Dong, Ji Qi, Honghui He, Chao He, Shaoxiong Liu, Jian Wu, Daniel S. Elson, and Hui Ma
Biomed. Opt. Express 8(8) 3643-3655 (2017)

Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters

Chao He, Honghui He, Jintao Chang, Yang Dong, Shaoxiong Liu, Nan Zeng, Yonghong He, and Hui Ma
Biomed. Opt. Express 6(8) 2934-2945 (2015)

Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E Du, Yihong Guo, Shaoxiong Liu, Jian Wu, Yonghong He, and Hui Ma
Biomed. Opt. Express 5(12) 4223-4234 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [Crossref] [PubMed]
  2. S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
    [Crossref] [PubMed]
  3. M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
    [Crossref] [PubMed]
  4. A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [Crossref] [PubMed]
  5. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, and B. Le Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37(6), 1061–1063 (2012).
    [Crossref] [PubMed]
  6. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
    [Crossref]
  7. T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
    [Crossref] [PubMed]
  8. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
    [Crossref] [PubMed]
  9. C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
    [Crossref] [PubMed]
  10. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2015).
  11. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
    [Crossref] [PubMed]
  12. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
    [Crossref] [PubMed]
  13. V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).
  14. C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
    [Crossref] [PubMed]
  15. A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
    [Crossref] [PubMed]
  16. C. Macdonald and I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
    [Crossref]
  17. D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
    [Crossref] [PubMed]
  18. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [Crossref] [PubMed]
  19. R. M. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2(6), 148 (1978).
    [Crossref] [PubMed]
  20. D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
    [Crossref]
  21. C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
    [Crossref] [PubMed]
  22. H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
    [PubMed]
  23. H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
    [Crossref] [PubMed]
  24. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  25. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag 2006).
  26. H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
    [Crossref] [PubMed]
  27. H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325 (2010).
    [Crossref] [PubMed]
  28. E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
    [Crossref] [PubMed]
  29. E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
    [Crossref]
  30. Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
    [Crossref] [PubMed]
  31. Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
    [Crossref] [PubMed]
  32. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  33. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
    [Crossref]
  34. P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
    [Crossref] [PubMed]
  35. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [Crossref] [PubMed]
  36. L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
    [Crossref]
  37. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997).
    [Crossref] [PubMed]

2017 (1)

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

2016 (2)

P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
[Crossref] [PubMed]

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

2015 (3)

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

2014 (4)

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

2013 (4)

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

2012 (2)

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. Le Grand, G. Le Brun, B. Turlin, and B. Le Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37(6), 1061–1063 (2012).
[Crossref] [PubMed]

2011 (4)

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[Crossref] [PubMed]

C. Macdonald and I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

2010 (3)

2009 (2)

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

2006 (1)

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

2005 (2)

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2003 (1)

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

1999 (1)

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

1997 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1992 (2)

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
[Crossref]

D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
[Crossref] [PubMed]

1978 (1)

Alali, S.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

Antonelli, M. R.

Azzam, R. M.

Babilotte, P.

Barton, J. K.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Benali, A.

Bigio, I. J.

Carvalho, M. I.

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

Chan, E. K.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Chang, J.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

Chen, D.

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

Chenault, D. B.

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
[Crossref]

Chipman, R. A.

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
[Crossref]

Choi, B.

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

De Martino, A.

Diller, K. R.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Dong, Y.

Du, E.

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

Duan, C.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

Dubreuil, M.

Gayet, B.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Ghosh, N.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

Goldstein, D. H.

Guo, Y.

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

He, C.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

He, H.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
[Crossref] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325 (2010).
[Crossref] [PubMed]

He, Y.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325 (2010).
[Crossref] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
[Crossref] [PubMed]

Hielscher, A. H.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jiang, X.

Kemp, N. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Le Brun, G.

Le Grand, Y.

Le Jeune, B.

Li, D.

Li, P.

Li, W.

Li, X.

P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

Liao, R.

Liao, R. A. N.

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Liu, C.

P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
[Crossref] [PubMed]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Liu, S.

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Lv, D.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

Ma, H.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

P. Li, C. Liu, X. Li, H. He, and H. Ma, “GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media,” Appl. Opt. 55(27), 7468–7476 (2016).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
[Crossref] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Ma, H. U. I.

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Macdonald, C.

C. Macdonald and I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[Crossref]

Manhas, S.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

Martin, L.

Meglinski, I.

C. Macdonald and I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[Crossref]

Mendenhall, J. M.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Milner, T. E.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Moriyama, E. H.

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

Mourant, J. R.

Nelson, J. S.

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

Nogueira, E.

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

Novikova, T.

Oliverira, L.

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

Pezzaniti, J. L.

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
[Crossref]

Pierangelo, A.

Rivet, S.

Rylander, C. G.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Rylander, H. G.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Sevrain, D.

Stumpp, O. F.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Sun, M.

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Tromberg, B. J.

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

Tuchin, V. V.

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

Turlin, B.

Validire, P.

Vargas, G.

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Vitkin, A.

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

Vitkin, I. A.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, Y.

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

Welch, A. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Wilson, B. C.

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

Wood, M. F.

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

Wu, J.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

Yeh, A. T.

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

Yun, T.

Zeng, N.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

C. He, H. He, J. Chang, Y. Dong, S. Liu, N. Zeng, Y. He, and H. Ma, “Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters,” Biomed. Opt. Express 6(8), 2934–2945 (2015).
[Crossref] [PubMed]

M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma, “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5(12), 4223–4234 (2014).
[Crossref] [PubMed]

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

Y. Guo, N. Zeng, H. He, T. Yun, E. Du, R. Liao, Y. He, and H. Ma, “A study on forward scattering Mueller matrix decomposition in anisotropic medium,” Opt. Express 21(15), 18361–18370 (2013).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

H. He, N. Zeng, R. Liao, T. Yun, W. Li, Y. He, and H. Ma, “Application of sphere-cylinder scattering model to skeletal muscle,” Opt. Express 18(14), 15104–15112 (2010).
[Crossref] [PubMed]

H. He, N. Zeng, W. Li, T. Yun, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium,” Opt. Lett. 35(14), 2323–2325 (2010).
[Crossref] [PubMed]

T. Yun, N. Zeng, W. Li, D. Li, X. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
[Crossref] [PubMed]

Zeng, N. A. N.

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhou, Q.

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

. Biophotonics (1)

H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, and H. Ma, “Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging,” . Biophotonics 10(5), 664–673 (2017).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. De Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102(24), 241103 (2013).
[Crossref]

Biomed. Opt. Express (2)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

J. Biomed. Opt. (9)

H. He, M. Sun, N. Zeng, E. Du, S. Liu, Y. Guo, J. Wu, Y. He, and H. Ma, “Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging,” J. Biomed. Opt. 19(10), 106007 (2014).
[Crossref] [PubMed]

E. Du, H. He, N. Zeng, Y. Guo, R. Liao, Y. He, and H. Ma, “Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media,” J. Biomed. Opt. 17(12), 126016 (2012).
[Crossref] [PubMed]

Y. Guo, C. Liu, N. Zeng, H. He, E. Du, Y. He, and H. Ma, “Study on retardance due to well-ordered birefringent cylinders in anisotropic scattering media,” J. Biomed. Opt. 19(6), 065001 (2014).
[Crossref] [PubMed]

C. He, H. He, X. Li, J. Chang, Y. Wang, S. Liu, N. Zeng, Y. He, and H. Ma, “Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images,” J. Biomed. Opt. 20(10), 105009 (2015).
[Crossref] [PubMed]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[Crossref] [PubMed]

S. Alali and A. Vitkin, “Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment,” J. Biomed. Opt. 20(6), 061104 (2015).
[Crossref] [PubMed]

M. F. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009).
[Crossref] [PubMed]

D. Chen, N. Zeng, Y. Wang, H. He, V. V. Tuchin, and H. Ma, “Study of optical clearing in polarization measurements by Monte Carlo simulations with anisotropic tissue-mimicking models,” J. Biomed. Opt. 21(8), 081209 (2016).
[Crossref] [PubMed]

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (3)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review,” J. Innov. Opt. Health Sci. 4(1), 9–38 (2011).
[Crossref]

L. Oliverira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, “Optical measurements of rat muscle samples under treatment with ethylene glycol and glucose,” J. Innov. Opt. Health Sci. 6(02), 1350012 (2013).
[Crossref]

E. Du, H. He, N. A. N. Zeng, C. Liu, Y. Guo, R. A. N. Liao, M. Sun, Y. He, and H. U. I. Ma, “Characteristic Features of Mueller Matrix Patterns for Polarization Scattering Model of Biological Tissues,” J. Innov. Opt. Health Sci. 07(01), 1350028 (2014).
[Crossref]

J. Invest. Dermatol. (1)

A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, “Reversible dissociation of collagen in tissues,” J. Invest. Dermatol. 121(6), 1332–1335 (2003).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Laser Photonics Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Laser Phys. (1)

V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).

Laser Phys. Lett. (1)

C. Macdonald and I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[Crossref]

Lasers Surg. Med. (1)

G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24(2), 133–141 (1999).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Proc. SPIE (1)

D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, “Mueller matrix algorithms,” Proc. SPIE 1746, 231–246 (1992).
[Crossref]

Other (2)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2015).

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The backward detection Mueller matrix imaging configuration. Source (LED, 633nm, 3W), L1 and L2 are lens (Thorlabs, USA), P1 and P2 are linear polarizers (extinction ratio>1000:1, Thorlabs, USA), QW1 and QW2 are quarter waveplates (Thorlabs, USA), and CCD (QImaging 32-0122A, 12 bit, Canada) (a). The photograph of nude mouse skin samples before immersion (left) and after immersion for 20 min in 80% glycerol solution (right), respectively (b).

Fig. 2
Fig. 2

Two-dimensional backscattering Mueller matrix images of the skin tissues at different immersion times: 0 min (a), 4 min (b), and 8 min (c) (the image size is 400 × 400 pixels; θ = 20 deg.).

Fig. 3
Fig. 3

The FDHs for all 16 MMEs from m11 to m44 at immersion times of 0 min, 4 min, and 8 min, respectively. the image size is 100 × 100 pixels, θ = 20 deg. The map in ith row and jth column corresponds to mij. The central values of the FDH curves of m22 and m33 before immersion and after 8 minutes immersion are marked by black solid lines.

Fig. 4
Fig. 4

The average values and SDs of all 16 MMEs change with the immersion time (min). The map in ith row and jth column corresponds to mij.

Fig. 5
Fig. 5

The variation of MMEs with RIM between the scatterer and the surrounding medium by Monte Carlo simulations. The horizontal coordinates are the clearing stage numbers, corresponding to the RI of the medium increased from 1.35 to 1.40 at 0.01 intervals. The map in ith row and jth column corresponds to mij.

Fig. 6
Fig. 6

The MMEs by the TOC experiment and simulation. For the experimental results (from Fig. 4), the six horizontal coordinates correspond to the immersion time from 0 to 10 min at 2 min intervals, while for the simulation results, they correspond to the process of simultaneously increasing the RI of the medium from 1.35 to 1.40 at 0.01 intervals, increasing the birefringence from 3.0 × 10‒5 to 6.0 × 10‒5 at 0.5 × 10‒5 intervals and decreasing the orientation fluctuation of cylindrical scatterers in the y-axis direction within the lamellae from 40 deg to 15 deg at 5 deg intervals. The map in ith row and jth column corresponds to mij.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= α 0 + n=1 12 ( α n cos2n θ 1 + β n sin2n θ 1 )