Abstract

A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor

A. J. Verhoef, K. Jespersen, T. V. Andersen, L. Grüner-Nielsen, T. Flöry, L. Zhu, A. Baltuška, and A. Fernández
Opt. Express 22(14) 16759-16766 (2014)

Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

Fabian F. Voigt, Florian Emaury, Philipp Bethge, Dominik Waldburger, Sandro M. Link, Stefano Carta, Alexander van der Bourg, Fritjof Helmchen, and Ursula Keller
Biomed. Opt. Express 8(7) 3213-3231 (2017)

Characterization and application of chirped photonic crystal fiber in multiphoton imaging

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang
Opt. Express 22(9) 10366-10379 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
    [Crossref] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  4. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [Crossref] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  6. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
    [Crossref] [PubMed]
  7. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  8. F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1412–1421 (2012).
    [Crossref] [PubMed]
  9. K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
    [Crossref] [PubMed]
  10. M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
    [Crossref] [PubMed]
  11. E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7(2), 324–334 (2016).
    [Crossref] [PubMed]
  12. R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
    [Crossref] [PubMed]
  13. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [Crossref] [PubMed]
  14. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
    [Crossref] [PubMed]
  15. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  16. J. J. Field, R. Carriles, K. E. Sheetz, E. V. Chandler, E. E. Hoover, S. E. Tillo, T. E. Hughes, A. W. Sylvester, D. Kleinfeld, and J. A. Squier, “Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation,” Opt. Express 18(13), 13661–13672 (2010).
    [Crossref] [PubMed]
  17. L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
    [Crossref] [PubMed]
  18. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
    [Crossref] [PubMed]
  19. X. Liu, J. Laegsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18(15), 15475–15483 (2010).
    [Crossref] [PubMed]
  20. X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
    [Crossref]
  21. A. J. Verhoef, K. Jespersen, T. V. Andersen, L. Grüner-Nielsen, T. Flöry, L. Zhu, A. Baltuška, and A. Fernández, “High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor,” Opt. Express 22(14), 16759–16766 (2014).
    [Crossref] [PubMed]
  22. L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
    [Crossref] [PubMed]
  23. K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
    [Crossref]
  24. B. Edvold and L. Grüner-Nielsen, “New technique for reducing splice loss to dispersion compensating fiber,” in proceedings of 22nd European Conference on Optical Communication (IEEE, 1996) pp. 245–248.
  25. J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16(13), 9986–9995 (2008).
    [Crossref] [PubMed]
  26. J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
    [Crossref]
  27. M. Distel and R. W. Köster, “In vivo time-lapse imaging of zebrafish embryonic development,” CSH Protoc. (2007).
  28. M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
    [Crossref] [PubMed]
  29. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006).
    [Crossref] [PubMed]
  30. S. H. M. Larsen, M. E. V. Pedersen, L. Grüner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization-maintaining higher-order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37(20), 4170–4172 (2012).
    [Crossref] [PubMed]

2016 (2)

E. P. Perillo, J. E. McCracken, D. C. Fernée, J. R. Goldak, F. A. Medina, D. R. Miller, H.-C. Yeh, and A. K. Dunn, “Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser,” Biomed. Opt. Express 7(2), 324–334 (2016).
[Crossref] [PubMed]

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

2015 (1)

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (3)

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
[Crossref] [PubMed]

2012 (4)

F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1412–1421 (2012).
[Crossref] [PubMed]

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

S. H. M. Larsen, M. E. V. Pedersen, L. Grüner-Nielsen, M. F. Yan, E. M. Monberg, P. W. Wisk, and K. Rottwitt, “Polarization-maintaining higher-order mode fiber module with anomalous dispersion at 1 μm,” Opt. Lett. 37(20), 4170–4172 (2012).
[Crossref] [PubMed]

2010 (3)

2009 (2)

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

2001 (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Andersen, T. V.

Baltuska, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Baltuška, A.

Balu, M.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Carriles, R.

Chandler, E. V.

Chen, S.-J.

Chen, Z.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Cheng, L.-C.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Dantus, M.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

Delcour, J. E.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dimarcello, F. V.

Distel, M.

M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
[Crossref] [PubMed]

Dunn, A. K.

Edvold, B.

B. Edvold and L. Grüner-Nielsen, “New technique for reducing splice loss to dispersion compensating fiber,” in proceedings of 22nd European Conference on Optical Communication (IEEE, 1996) pp. 245–248.

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Fernández, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

A. J. Verhoef, K. Jespersen, T. V. Andersen, L. Grüner-Nielsen, T. Flöry, L. Zhu, A. Baltuška, and A. Fernández, “High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor,” Opt. Express 22(14), 16759–16766 (2014).
[Crossref] [PubMed]

Fernée, D. C.

Field, J. J.

Flöry, T.

Ghalmi, S.

Göbel, W.

Goldak, J. R.

Golshani, P.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Gowda, R.

Gray, D. R.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Grüner Nielsen, L.

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

Grüner-Nielsen, L.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Hoover, E. E.

Horton, N. G.

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Hou, J.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

Houmann, A.

Huang, B. S.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Hughes, T. E.

Jakobsen, D.

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
[Crossref] [PubMed]

Jespersen, K.

Jespersen, K. G.

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
[Crossref] [PubMed]

Kieu, K.

Kleinfeld, D.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

Köster, R. W.

M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
[Crossref] [PubMed]

Krasieva, T. B.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Kristensen, J. T.

Kristensen, P.

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

Laegsgaard, J.

Lagsgaard, J.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

Larsen, S. H. M.

Liu, J.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Liu, X.

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

McCracken, J. E.

Medina, F. A.

Mehravar, S.

Miller, D. R.

Monberg, E.

Monberg, E. M.

Nicholson, J. W.

Nimmerjahn, A.

Nöbauer, T.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Norwood, R. A.

Pálsdóttir, B.

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010).
[Crossref] [PubMed]

Parmigiani, F.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Pedersen, M. E. V.

Perillo, E. P.

Pernía-Andrade, A. J.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Petrovich, M. N.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Peyghambarian, N.

Poletti, F.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Prevedel, R.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Ramachandran, S.

Richardson, D. J.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Rottwitt, K.

Sandoghchi, S. R.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Saytashev, I.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Sheetz, K. E.

Squier, J. A.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sylvester, A. W.

Tang, S.

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Tillo, S. E.

Tromberg, B. J.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

Turchinovich, D.

Vaziri, A.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Verhoef, A. J.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

A. J. Verhoef, K. Jespersen, T. V. Andersen, L. Grüner-Nielsen, T. Flöry, L. Zhu, A. Baltuška, and A. Fernández, “High peak-power monolithic femtosecond ytterbium fiber chirped pulse amplifier with a spliced-on hollow core fiber compressor,” Opt. Express 22(14), 16759–16766 (2014).
[Crossref] [PubMed]

Wang, K.

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weisenburger, S.

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Wheeler, N. V.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1412–1421 (2012).
[Crossref] [PubMed]

Wisk, P.

Wisk, P. W.

Wooler, J. P.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

Wullimann, M. F.

M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
[Crossref] [PubMed]

Xu, C.

L.-C. Cheng, N. G. Horton, K. Wang, S.-J. Chen, and C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy,” Biomed. Opt. Express 5(10), 3427–3433 (2014).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

Yan, M. F.

Yeh, H.-C.

Zhu, L.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (2)

F. W. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1412–1421 (2012).
[Crossref] [PubMed]

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1439–1450 (2012).
[Crossref]

J. Biomed. Opt. (2)

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. J. Tromberg, “Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin,” J. Biomed. Opt. 20(12), 120501 (2015).
[Crossref] [PubMed]

S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009).
[Crossref] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[Crossref] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

R. Prevedel, A. J. Verhoef, A. J. Pernía-Andrade, S. Weisenburger, B. S. Huang, T. Nöbauer, A. Fernández, J. E. Delcour, P. Golshani, A. Baltuska, and A. Vaziri, “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016), doi:.
[Crossref] [PubMed]

Nat. Photonics (2)

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Distel, M. F. Wullimann, and R. W. Köster, “Optimized Gal4 genetics for permanent gene expression mapping in zebrafish,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13365–13370 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

K. G. Jespersen, D. Jakobsen, P. Kristensen, B. Pálsdóttir, and L. Grüner Nielsen, “Stretcher fibers for chirped pulse amplification at 1030nm and 1550nm,” Proc. SPIE 8237, 82371Q (2012).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (3)

B. Edvold and L. Grüner-Nielsen, “New technique for reducing splice loss to dispersion compensating fiber,” in proceedings of 22nd European Conference on Optical Communication (IEEE, 1996) pp. 245–248.

J. P. Wooler, F. Parmigiani, S. R. Sandoghchi, N. V. Wheeler, D. R. Gray, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Data transmission over 1km HC-PBGF arranged with microstructured fiber spliced to both itself and SMF,” in proceedings of 39th European Conference and Exhibition on Optical Communication (IEEE, 2013) Tu.3.A.3, DOI:
[Crossref]

M. Distel and R. W. Köster, “In vivo time-lapse imaging of zebrafish embryonic development,” CSH Protoc. (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

System layout. The Yb-fiber chirped pulse amplifier is designed to operate with negligible nonlinear phase accumulation, such that the pulse duration at the output of the HC-PBF compressor is independent of the pump power of the second amplifier stage, and thus output pulse energy. The collimated output beam is guided to the laser scanning two-photon microscope (leftmost part of the image). The x-y-position of the focus in the sample plane of the microscope is controlled by two galvanometric mirrors in the beam path. PMT: photomultiplier tube. LD: laser diode. Dashed box inset: measured beam profile with x- and y-projections (full lines) and respective Gaussian fits (dashed lines).

Fig. 2
Fig. 2

SH FROG characterization of the compressed pulses from our Yb-fiber CPA. Left panel: laser output spectrum, together with the reconstructed spectral phase of system I (solid red curve) and system II (dotted red curve). Center panel: reconstructed temporal intensity profile (black) and intensity autocorrelation (blue) of system I. The measured pulse duration is 258 fs FWHM, and corresponds well to the expected pulse duration taking into account the amplified spectrum and residual (uncompensated) higher-order chirp calculated for system I (red). Right panel: reconstructed temporal intensity (black) and intensity autocorrelation (blue) of system II. The measured pulse duration is 310 fs FWHM, corresponding well to the expected pulse duration taking into account the amplified spectrum and residual (uncompensated) higher-order chirp calculated for system II (red).

Fig. 3
Fig. 3

Left: a 300x300 µm2 image (500x500 pixels) of Dragon Green fluorescent beads (15.4 µm diameter) between a microscope slide and 0.17 mm thin coverslip. The image is a composite of three images that are the result of averaging 25 frames at low laser power with system II (red image channel), full laser power with system II (green image channel) and full laser power with system I (blue image channel). The size of the beads is used to calibrate the field-of-view of the microscope, and the steep edges of the beads in the image indicate a diffraction limited ~1 µm diameter of the excitation volume at the focus of the microscope, and a ~0.6 µm spatial resolution of our imaging system. Brightness and contrast of the three color-channels of the image are adjusted manually for good visibility of all beads. The excellent overlap of all three color-channels illustrates that no sample movement occurred during the 18 measurements at different laser powers with the two systems. Right: average fluorescence signal versus laser power for the two different laser systems: System I, using SMF and DCF stretcher, black symbols (measurement) and line (fit); System II, using only PM-SMF stretcher, red symbols (measurement) and line (fit).

Fig. 4
Fig. 4

Image of a fixed stained lily-of-the-valley root. The scale bars correspond to 100 µm. Manual adjustment of the brightness and contrast of the green and red channels in the image make the lignin rich region stained with safranin appear mainly green, although the signal due to fluorescence of safranin is observed in both channels.

Fig. 5
Fig. 5

Left panel: image of a rat-tail tendon mounted between a microscope slide and 0.17 mm thick cover slip. The scale bar corresponds to 100 µm. The steep edges of the tendon and individual collagen fiber strands in the image illustrate the diffraction limited <1 µm resolution of our imaging system. A single 500x500 pixel frame was acquired in 2.5 s, and to improve the image quality (the 5 times higher signal-to-noise ratio allows resolving individual collagen strands even in regions with low signal with good fidelity) 25 frames are averaged. Center panel: cross-section through the image at the location indicated by the yellow dotted line in the left panel. Right panel: zoomed in portion of the center panel.

Fig. 6
Fig. 6

Two-photon mCherry (red) fluorescence from a 5 days old zebrafish larva. The left images are composed of 20 frames of 300x300 µm2 each. The scale bars correspond to 100 µm. The upper left image shows the red fluorescence from mCherry-labelled cells, with the contrast set such that only the brightest cells (central nervous system cells, blue arrows) are slightly saturated. The lower left image has the brightness setting increased, such that finer structures with weaker fluorescence, for example from the cell walls of the notochord (red arrows), just below the bright spinal cord, can be seen. The upper and lower right images show a zoom of the dashed boxes indicated in the respective left images.

Fig. 7
Fig. 7

Image of a 5 days old zebrafish larva’s tail (left) and 2 days old larva’s muscle tissue (right). The FOV of both images is 300x300 µm2, the images are composed of 100 and 77 frames respectively. The green line structures are resulting from second harmonic radiation generated from collagen fibrils. The red structures are due to two-photon fluorescence from mCherry labelled cells. The (large) bright green/yellow structures visible are pigmented cells with stronger scattering.