Abstract

We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

Fabian F. Voigt, Florian Emaury, Philipp Bethge, Dominik Waldburger, Sandro M. Link, Stefano Carta, Alexander van der Bourg, Fritjof Helmchen, and Ursula Keller
Biomed. Opt. Express 8(7) 3213-3231 (2017)

Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging

Quan Cui, Zhongyun Chen, Qian Liu, Zhihong Zhang, Qingming Luo, and Ling Fu
Biomed. Opt. Express 8(9) 4026-4036 (2017)

Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage

Zongxi Li, Nalu Navarro-Alvarez, Emily J. Keeley, Nicholas H. Nowell, Beatriz M. M. Goncalves, Christene A. Huang, and Conor L. Evans
Biomed. Opt. Express 8(10) 4640-4651 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
    [Crossref]
  2. D. Stannard, “Pulse Oximetry for Perioperative Monitoring,” AORN J. 92(6), 683–684 (2010).
    [Crossref] [PubMed]
  3. M. Nitzan and H. Taitelbaum, “The measurement of oxygen saturation in arterial and venous blood,” IEEE Instrum. Meas. Mag. 11(3), 9–15 (2008).
    [Crossref]
  4. E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–592 (2003).
    [Crossref]
  5. T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).
  6. C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
    [Crossref] [PubMed]
  7. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
    [Crossref] [PubMed]
  8. G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
    [Crossref] [PubMed]
  9. Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
    [PubMed]
  10. T. Y. Abay and P. A. Kyriacou, “Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges,” Physiol. Meas. 37(4), 503–514 (2016).
    [Crossref] [PubMed]
  11. Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).
  12. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  13. E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
    [Crossref] [PubMed]
  14. Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
    [Crossref]
  15. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
    [Crossref] [PubMed]
  16. M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
    [Crossref] [PubMed]
  17. S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
    [Crossref] [PubMed]
  18. R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
    [Crossref] [PubMed]
  19. J. J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
    [Crossref] [PubMed]
  20. W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
    [Crossref]
  21. http://www.yuyue.com.cn/index.php/Product/134.html .
  22. K. P. Strohl and M. D. Altose, “Oxygen saturation during breath-holding and during apneas in sleep,” Chest 85(2), 181–186 (1984).
    [Crossref] [PubMed]

2016 (3)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Y. Abay and P. A. Kyriacou, “Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges,” Physiol. Meas. 37(4), 503–514 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

2014 (2)

Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
[Crossref]

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

2013 (3)

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
[Crossref]

Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
[PubMed]

E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

2011 (1)

H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
[Crossref]

2010 (2)

D. Stannard, “Pulse Oximetry for Perioperative Monitoring,” AORN J. 92(6), 683–684 (2010).
[Crossref] [PubMed]

Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).

2008 (2)

M. Nitzan and H. Taitelbaum, “The measurement of oxygen saturation in arterial and venous blood,” IEEE Instrum. Meas. Mag. 11(3), 9–15 (2008).
[Crossref]

J. J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
[Crossref] [PubMed]

2006 (2)

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).

2003 (2)

S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
[Crossref] [PubMed]

E. Higurashi, R. Sawada, and T. Ito, “An integrated laser blood flowmeter,” J. Lightwave Technol. 21(3), 591–592 (2003).
[Crossref]

2000 (1)

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

1992 (1)

G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
[Crossref] [PubMed]

1989 (1)

1984 (1)

K. P. Strohl and M. D. Altose, “Oxygen saturation during breath-holding and during apneas in sleep,” Chest 85(2), 181–186 (1984).
[Crossref] [PubMed]

Abay, T. Y.

T. Y. Abay and P. A. Kyriacou, “Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges,” Physiol. Meas. 37(4), 503–514 (2016).
[Crossref] [PubMed]

Abdollahi, Z.

Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
[PubMed]

Altose, M. D.

K. P. Strohl and M. D. Altose, “Oxygen saturation during breath-holding and during apneas in sleep,” Chest 85(2), 181–186 (1984).
[Crossref] [PubMed]

Arias, A. C.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

Babchenko, A.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

Barnett, N. J.

G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
[Crossref] [PubMed]

Cai, Q.

Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).

Cassano, T.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Chan, E. D.

E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Chan, M. M.

E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Chance, B.

Cicco, G.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Deng, H.

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
[Crossref]

Dotor Castilla, M. L.

S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
[Crossref] [PubMed]

Dougherty, G.

G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
[Crossref] [PubMed]

Feng, Y.

Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
[Crossref]

He, J. J.

Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
[Crossref]

J. J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
[Crossref] [PubMed]

He, J.-J.

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
[Crossref]

Higurashi, E.

Huang, X.

H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
[Crossref]

Ito, T.

Jinno, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Kaltenbrunner, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Khan, Y.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

Khanokh, B.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

Kitanosako, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Kiyokura, T.

T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).

Kohl-Bareis, M.

H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
[Crossref]

Koizumi, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Kyriacou, P. A.

T. Y. Abay and P. A. Kyriacou, “Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges,” Physiol. Meas. 37(4), 503–514 (2016).
[Crossref] [PubMed]

Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
[PubMed]

Leo, M. G.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Liu, D.

Liu, H.

H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
[Crossref]

Lochner, C. M.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

Lopez Silva, S. M.

S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
[Crossref] [PubMed]

Lugarà, P. M.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Matsuhisa, N.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Mino, S.

T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).

Nitti, L.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Nitzan, M.

M. Nitzan and H. Taitelbaum, “The measurement of oxygen saturation in arterial and venous blood,” IEEE Instrum. Meas. Mag. 11(3), 9–15 (2008).
[Crossref]

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

Patterson, M. S.

Pettinger, S. J.

G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
[Crossref] [PubMed]

Phillips, J. P.

Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
[PubMed]

Pierre, A.

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

Sawada, R.

Shimada, J.

T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).

Silveira Martin, J. P.

S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
[Crossref] [PubMed]

Someya, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Song, G.

Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
[Crossref]

Stannard, D.

D. Stannard, “Pulse Oximetry for Perioperative Monitoring,” AORN J. 92(6), 683–684 (2010).
[Crossref] [PubMed]

Strohl, K. P.

K. P. Strohl and M. D. Altose, “Oxygen saturation during breath-holding and during apneas in sleep,” Chest 85(2), 181–186 (1984).
[Crossref] [PubMed]

Sun, J.

Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).

Tachibana, Y.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Taitelbaum, H.

M. Nitzan and H. Taitelbaum, “The measurement of oxygen saturation in arterial and venous blood,” IEEE Instrum. Meas. Mag. 11(3), 9–15 (2008).
[Crossref]

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

Tommasi, R.

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

Wei, W.

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
[Crossref]

Wilson, B. C.

Xia, L.

Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).

Yokota, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Yukita, W.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Zalar, P.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

R. Tommasi, M. G. Leo, G. Cicco, T. Cassano, L. Nitti, and P. M. Lugarà, “Preliminary results of oxygen saturation with a prototype of continuous wave laser oximeter,” Adv. Exp. Med. Biol. 578(7), 55–60 (2006).
[Crossref] [PubMed]

AORN J. (1)

D. Stannard, “Pulse Oximetry for Perioperative Monitoring,” AORN J. 92(6), 683–684 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

BMEI (1)

Q. Cai, J. Sun, and L. Xia, “Implementation of a wireless pulse oximeter based on wrist band sensor,” BMEI 3(5), 1897–1990 (2010).

Chest (1)

K. P. Strohl and M. D. Altose, “Oxygen saturation during breath-holding and during apneas in sleep,” Chest 85(2), 181–186 (1984).
[Crossref] [PubMed]

Clin. Phys. Physiol. Meas. (1)

G. Dougherty, N. J. Barnett, and S. J. Pettinger, “A prototype instrument combining laser Doppler flowmetry and reflection pulse oximetry,” Clin. Phys. Physiol. Meas. 13(2), 105–114 (1992).
[Crossref] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

Z. Abdollahi, J. P. Phillips, and P. A. Kyriacou, “Evaluation of a combined reflectance photoplethysmography and laser Doppler flowmetry surface probe,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1728–1731 (2013).
[PubMed]

IEEE Instrum. Meas. Mag. (1)

M. Nitzan and H. Taitelbaum, “The measurement of oxygen saturation in arterial and venous blood,” IEEE Instrum. Meas. Mag. 11(3), 9–15 (2008).
[Crossref]

IEEE Photonics J. (1)

W. Wei, H. Deng, and J.-J. He, “GaAs/AlGaAs-Based 870-nm-Band Widely Tunable Edge-Emitting V-Cavity Laser,” IEEE Photonics J. 5(5), 1501607 (2013).
[Crossref]

J. Biomed. Opt. (2)

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt. 5(2), 155–162 (2000).
[Crossref] [PubMed]

S. M. Lopez Silva, M. L. Dotor Castilla, and J. P. Silveira Martin, “Near-infrared transmittance pulse oximetry with laser diodes,” J. Biomed. Opt. 8(3), 525–533 (2003).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Nat. Commun. (1)

C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun. 5, 5745 (2014).
[Crossref] [PubMed]

NTT Tech. Rev. (1)

T. Kiyokura, S. Mino, and J. Shimada, “Wearable laser blood flowmeter,” NTT Tech. Rev. 4(1), 38–43 (2006).

Opt. Express (1)

Physiol. Meas. (1)

T. Y. Abay and P. A. Kyriacou, “Comparison of NIRS, laser Doppler flowmetry, photoplethysmography, and pulse oximetry during vascular occlusion challenges,” Physiol. Meas. 37(4), 503–514 (2016).
[Crossref] [PubMed]

Proc. SPIE (2)

Y. Feng, G. Song, and J. J. He, “Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements,” Proc. SPIE 9267, 926712 (2014).
[Crossref]

H. Liu, M. Kohl-Bareis, and X. Huang, “Design of a tissue oxygenation monitor and verification on human skin,” Proc. SPIE 8087, 80871Y (2011).
[Crossref]

Respir. Med. (1)

E. D. Chan, M. M. Chan, and M. M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Sci. Adv. (2)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2(4), e1501856 (2016).
[Crossref] [PubMed]

Other (1)

http://www.yuyue.com.cn/index.php/Product/134.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The ratio difference ΔR as a function of λ1 for a wavelength tuning range of 8, 11 and 14 nm and (b) SpO2 as a function of the ratio R for different dual-wavelength combinations.

Fig. 2
Fig. 2

(a) Optical microscope image of the laser, and (b) measured single-mode spectrum.

Fig. 3
Fig. 3

(a) Measured tuning curves in two ranges with different bias currents in the half-wave coupler electrode and the short-cavity electrode, and (b) overlapped 42-channel laser spectra.

Fig. 4
Fig. 4

(a) Schematic of the experimental set up and (b) oxygen saturation as a function of the R value. The dotted line is the nonlinear fitting of SpO2 versus R to the rational function.

Fig. 5
Fig. 5

Performance of the single-laser-based reflective pulse oximeter system. (a) The PPG signals at wavelength 710.3 nm. (b) The PPG signals at wavelength 724.4 nm. Note that a partial enlarged view shows four cardiac cycles of the PPG signals. (c) The calculated R based on Eq. (12). (d) The blue line indicates the calculated SpO2 based on Eq. (13), and the red line indicates the reference saturation obtained from the commercial co-oximeter.

Fig. 6
Fig. 6

(a) The power spectrum of PPG signals. (b) The blood flow and (c) The blood flow data obtained with a commercial LDF.

Tables (2)

Tables Icon

Table 1 The comparison of methods for different dual-wavelength combinations.

Tables Icon

Table 2 Wavelength tuning ranges with different bias currents on the three electrodes.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

1 v t ϕ( r,t )D 2 ϕ( r,t )+ μ a ϕ( r,t )=S( r,t )
D= 1 3[ μ a +( 1g ) μ s ]
φ( ρ,t )= ( 4πDv ) 3/2 z 0 t 5/2 exp( μ a vt )exp( ρ 2 + z 0 2 4Dct )
t lnφ( ρ,t )= 5 2t μ a v+ ρ 2 4Dv t 2
W= lim t t lnφ( ρ,t )= lim t 1 φ φ( ρ,t ) t = μ a v
μ a = ε Hb C Hb + ε Hb O 2 C Hb O 2
W=( ε Hb C Hb + ε Hb O 2 C Hb O 2 )v
W λ 1 W λ 2 = ( ε Hb λ 1 C Hb + ε Hb O 2 λ 1 C Hb O 2 ) v λ 1 ( ε Hb λ 2 C Hb + ε Hb O 2 λ 2 C Hb O 2 ) v λ 2
v λ 1 v λ 2
W= I AC I DC
Sp O 2 = C Hb O 2 C Hb O 2 + C Hb = ε Hb λ 1 ε Hb λ 2 R ( ε Hb λ 1 ε Hb O 2 λ 1 )( ε Hb λ 2 ε Hb O 2 λ 2 )R
R= I AC λ 1 / I DC λ 1 I AC λ 2 / I DC λ 2
Sp O 2 = 120*R267 83*R235

Metrics