Abstract

Hypertension is a major risk factor for cardiovascular disease and thus at the origin of many deaths by e.g. heart attack or stroke. Hypertension is caused by many factors including an increase in arterial stiffness which leads to changes in pulse wave velocity and wave reflections. Those often result in an increased left ventricular load which may result in heart failure as well as an increased pulsatile pressure in the microcirculation l to damage to blood vessels. In order to specifically treat the different causes of hypertension it is desirable to perform a pulse wave analysis as a complement to measurements of systolic and diastolic pressure by brachial cuff sphygmomanometry. Here we show that Diffusing Wave Spectroscopy, a novel non-invasive portable tool, is able to monitor blood flow changes with a high temporal resolution. The measured pulse travel times give detailed information of the pulse wave blood flow profile.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy

Franck Jaillon, Jun Li, Gregor Dietsche, Thomas Elbert, and Thomas Gisler
Opt. Express 15(11) 6643-6650 (2007)

Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI

Guoqiang Yu, Thomas F. Floyd, Turgut Durduran, Chao Zhou, Jiongjiong Wang, John A. Detre, and Arjun G. Yodh
Opt. Express 15(3) 1064-1075 (2007)

Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise

Yu Shang, T. B. Symons, Turgut Durduran, A. G. Yodh, and Guoqiang Yu
Biomed. Opt. Express 1(2) 500-511 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
    [Crossref] [PubMed]
  2. R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
    [Crossref] [PubMed]
  3. I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
    [Crossref] [PubMed]
  4. M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
    [Crossref] [PubMed]
  5. M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
    [Crossref] [PubMed]
  6. D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
    [Crossref] [PubMed]
  7. P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
    [Crossref] [PubMed]
  8. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
    [Crossref] [PubMed]
  9. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
    [Crossref] [PubMed]
  10. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
    [Crossref] [PubMed]
  11. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85Pt 1, 51–63 (2014).
    [Crossref]
  12. D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
    [Crossref] [PubMed]
  13. D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
    [Crossref] [PubMed]
  14. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: Theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).
  15. M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
    [Crossref] [PubMed]
  16. D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
    [Crossref]
  17. A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
    [Crossref] [PubMed]
  18. P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
    [Crossref] [PubMed]
  19. S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
    [Crossref]
  20. E. J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man,” Circulation Research 3, 623–632 (1955).
    [Crossref] [PubMed]
  21. G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
    [Crossref] [PubMed]

2017 (1)

S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
[Crossref]

2016 (3)

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

2015 (1)

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

2014 (2)

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85Pt 1, 51–63 (2014).
[Crossref]

2011 (1)

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

2010 (2)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

2009 (2)

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

2007 (1)

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

2006 (1)

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

2005 (2)

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

2004 (1)

I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
[Crossref] [PubMed]

1999 (1)

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

1993 (1)

D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
[Crossref]

1955 (1)

E. J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man,” Circulation Research 3, 623–632 (1955).
[Crossref] [PubMed]

Alperin, N.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

Anastasio, F.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Avolio, A.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Avolio, A. P.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Baker, W. B.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

Battista, F.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Belau, M.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Bicout, D.

D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
[Crossref]

Boas, D. A.

S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
[Crossref]

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: Theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

Bosch, J. G.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Boutouyrie, P.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Buckley, E. M.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Butlin, M.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Capener, D.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Carp, S.

S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
[Crossref]

Carp, S. A.

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Chirinos, J. A.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Choe, R.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

Cockcroft, J.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Cockcroft, J. R.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Contini, D.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Cunningham, S. L.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

de Jong, N.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Detre, J. A.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Dietsche, G.

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Durduran, T.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85Pt 1, 51–63 (2014).
[Crossref]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

Farzam, P.

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Ford, M. D.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

Franceschini, M. A.

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Frayne, R.

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

Gannon, K.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Gavish, B.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Giannattasio, C.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Gisler, T.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Gwilliam, M. N.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Hayoz, D.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Heffernan, K. S.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Hering, G.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Hoggard, N.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Holdsworth, D. W.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

Hughes, A. D.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

Jaillon, F.

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Kavuri, V.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Khir, A. W.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

Kim, M. N.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Ko, T.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Kroeker, E. J.

E. J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man,” Circulation Research 3, 623–632 (1955).
[Crossref] [PubMed]

Kruizinga, P.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Lakatta, E. G.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Laurent, S.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Lee, S. H.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

Li, J.

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Li, Z.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Li, Z. R.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Marshall, I.

I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
[Crossref] [PubMed]

Marzo, A.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Mastik, F.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Maynard, R.

D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
[Crossref]

McEniery, C. M.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Merenda, F.

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Mesquita, R. C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Mitchell, G. F.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Mullen, M. T.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Najjar, S. S.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Nichols, W. W.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Ninck, M.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Norley, C. J. D.

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

Ortolf, C.

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Pannier, B.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Papathanasopoulou, P.

I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
[Crossref] [PubMed]

Parker, K. H.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

Parthasarathy, A. B.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Perren, F.

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Pucci, G.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Reymond, P.

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Rufenacht, D.

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Rutt, B. K.

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

Sakadzic, S.

S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
[Crossref]

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Sanesi, L.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Schenkel, S.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Schiffrin, E. L.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Schillaci, G.

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Schinkel, A. F. L.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Selb, J.

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Singh, P.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Spinelli, L.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Steinman, D. A.

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

Stergiopulos, N.

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Struijker-Boudier, H.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Thom, S. A. M.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

Torricelli, A.

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Townsend, R. R.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Urbina, E. M.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Van Bortel, L.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

van den Oord, S. C. H.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

van der Steen, A. F. W.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

van Soest, G.

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Verma, P. K.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Vlachopoulos, C.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Wang, D. T.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Wartolowska, K.

I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
[Crossref] [PubMed]

Weber, T.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Wilkinson, I.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Wilkinson, I. B.

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Wilkinson, I. D.

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Wood, E. H.

E. J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man,” Circulation Research 3, 623–632 (1955).
[Crossref] [PubMed]

Yodh, A. G.

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85Pt 1, 51–63 (2014).
[Crossref]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

Yu, G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Zambanini, A.

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

American Journal of Physiology-heart and Circulatory Physiology (2)

A. Zambanini, S. L. Cunningham, K. H. Parker, A. W. Khir, S. A. M. Thom, and A. D. Hughes, “Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis,” American Journal of Physiology-heart and Circulatory Physiology 289, H270–H276 (2005).
[Crossref] [PubMed]

P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, “Validation of a one-dimensional model of the systemic arterial tree,” American Journal of Physiology-heart and Circulatory Physiology 297, H208–H222 (2009).
[Crossref] [PubMed]

Applied Optics (1)

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Applied Optics 46, 8506–8514 (2007).
[Crossref] [PubMed]

Biomedical Optics Express (1)

D. T. Wang, A. B. Parthasarathy, W. B. Baker, K. Gannon, V. Kavuri, T. Ko, S. Schenkel, Z. Li, Z. R. Li, M. T. Mullen, J. A. Detre, and A. G. Yodh, “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomedical Optics Express 7, 776–797 (2016).
[Crossref] [PubMed]

Circulation Research (1)

E. J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man,” Circulation Research 3, 623–632 (1955).
[Crossref] [PubMed]

European Heart Journal (1)

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier, “Expert consensus document on arterial stiffness: methodological issues and clinical applications,” European Heart Journal 27, 2588–2605 (2006).
[Crossref] [PubMed]

Hypertension (1)

R. R. Townsend, I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockcroft, K. S. Heffernan, E. G. Lakatta, C. M. McEniery, G. F. Mitchell, S. S. Najjar, W. W. Nichols, E. M. Urbina, and T. Weber, “Recommendations for improving and standardizing vascular research on arterial stiffness a scientific statement from the american heart association,” Hypertension 66, 698–722 (2015).
[Crossref] [PubMed]

Journal of Biomedical Optics (2)

S. Sakadzic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” Journal of Biomedical Optics 22, 027006 (2017).
[Crossref]

M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, “Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy,” Journal of Biomedical Optics 15, 057007 (2010).
[Crossref] [PubMed]

Journal of Cerebral Blood Flow and Metabolism (1)

M. N. Gwilliam, N. Hoggard, D. Capener, P. Singh, A. Marzo, P. K. Verma, and I. D. Wilkinson, “Mr derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries,” Journal of Cerebral Blood Flow and Metabolism 29, 1975–1982 (2009).
[Crossref] [PubMed]

Journal of Hypertension (1)

G. Pucci, F. Battista, F. Anastasio, L. Sanesi, B. Gavish, M. Butlin, A. Avolio, and G. Schillaci, “Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform,” Journal of Hypertension 34, 1091–1098 (2016).
[Crossref] [PubMed]

Neuroimage (1)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85Pt 1, 51–63 (2014).
[Crossref]

Neurophotonics (1)

D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3, 031412 (2016).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci 369, 4390–4406 (2011).
[Crossref] [PubMed]

Physica A (1)

D. Bicout and R. Maynard, “Diffusing wave spectroscopy in inhomogeneous flows,” Physica A 199, 387–411 (1993).
[Crossref]

Physiological Measurement (3)

D. W. Holdsworth, C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt, “Characterization of common carotid artery blood-flow waveforms in normal human subjects,” Physiological Measurement 20, 219–240 (1999).
[Crossref] [PubMed]

I. Marshall, P. Papathanasopoulou, and K. Wartolowska, “Carotid flow rates and flow division at the bifurcation in healthy volunteers,” Physiological Measurement 25, 691–697 (2004).
[Crossref] [PubMed]

M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries,” Physiological Measurement 26, 477–488 (2005).
[Crossref] [PubMed]

Reports On Progress In Physics (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports On Progress In Physics 73, 076701 (2010).
[Crossref] [PubMed]

Ultrasound In Medicine and Biology (1)

P. Kruizinga, F. Mastik, S. C. H. van den Oord, A. F. L. Schinkel, J. G. Bosch, N. de Jong, G. van Soest, and A. F. W. van der Steen, “High-definition imaging of carotid artery wall dynamics,” Ultrasound In Medicine and Biology 40, 2392–2403 (2014).
[Crossref] [PubMed]

Other (1)

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: Theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relative diffusion coefficient (rel D - red solid lines) and ecg (blue - dotted line) of the measurement on the A. carotis communis dextra.

Fig. 2
Fig. 2

Average waveform of the diffusing wave spectroscopy data fitted with the diffusion model (D - solid lines) and the mixed diffusion-shearing model (D(2) - dashed line). The average ecg of the measurements is shown as dotted lines. Red scale bar indicate the relative amplitude of the change after normalization of the optical data to the average value during measurement. Blue scale bar is the amplitude of the ecg in arbitrary units. Measurements are from top to bottom: A. carotis communis dextra (sitting position), A. radialis dextra (sitting position), A. radialis dextra (standing position) and A. dorsalis pedis dextra (standing position). Peak positions of D are additionally marked as a guide to the eye on the timeline.

Fig. 3
Fig. 3

Changes during occlusion of the brachial artery while measuring at the radial artery. The cuff pressure has been manually increased by 10mmHg every 20s (from back to front). Each curve represents the average waveform of 10s. It can be nicely seen that a shoulder instead of a second peak develops when the cuff pressure reaches the diastolic blood pressure.

Tables (1)

Tables Icon

Table 1 Average time in ms from R peak of ecg till peaks in the diffusion coefficient. Peaks are determined as described in the text. *peak was incorrectly determined as 66ms by the peak finder procedure, due to no clear minimum. Used bottom-up segmentation of waveform to determine peak onset instead of procedure described above.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( τ ) = 1 + β | exp [ α ( τ ) r 1 ] exp [ α ( τ ) r 2 ] exp [ α ( 0 ) r 1 ] exp [ α ( 0 ) r 2 ] | 2

Metrics