Abstract

Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Portable simultaneous vision device to simulate multifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Jose Ramon Alonso-Sanz, Daniel Pascual, Miriam Velasco-Ocana, Pablo Perez-Merino, and Susana Marcos
Optica 3(8) 918-924 (2016)

Multifocal intraocular lens providing optimized through-focus performance

David Fernández, Sergio Barbero, Carlos Dorronsoro, and Susana Marcos
Opt. Lett. 38(24) 5303-5306 (2013)

Extended depth of focus intraocular lens. Chromatic performance

Maria S. Millán and Fidel Vega
Biomed. Opt. Express 8(9) 4294-4309 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Buznego and W. B. Trattler, “Presbyopia-correcting intraocular lenses,” Curr. Opin. Ophthalmol. 20(1), 13–18 (2009).
    [Crossref]
  2. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
    [Crossref]
  3. P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
    [Crossref]
  4. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
    [Crossref] [PubMed]
  5. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
    [Crossref] [PubMed]
  6. V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
    [Crossref] [PubMed]
  7. H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [Crossref]
  8. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics(SPIE Press, 2004).
    [Crossref]
  9. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  10. M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
    [Crossref] [PubMed]
  11. J. Schwiegerling, “Statistical generation of normal and post-refractive surgery wavefronts,” Clin. Exp. Optom. 92(3), 223–226 (2009).
    [Crossref] [PubMed]
  12. M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
    [Crossref]
  13. V. Akondi and B. Vohnsen, “Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing,” Ophthalmic Physiol. Opt. 33(4), 434–443 (2013).
    [Crossref] [PubMed]
  14. W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vis. Res. 16(9), 999–1005 (1976).
    [Crossref] [PubMed]
  15. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vis. Res. 26(2), 361–366 (1986).
    [Crossref] [PubMed]
  16. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  17. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [Crossref] [PubMed]
  18. M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
    [Crossref] [PubMed]
  19. M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
    [Crossref] [PubMed]
  20. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).
  21. D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refract. Surg. 39(7), 1093–1099 (2013).
    [Crossref] [PubMed]
  22. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
    [Crossref]

2017 (1)

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

2016 (2)

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

2015 (1)

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

2014 (1)

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

2013 (3)

V. Akondi and B. Vohnsen, “Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing,” Ophthalmic Physiol. Opt. 33(4), 434–443 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refract. Surg. 39(7), 1093–1099 (2013).
[Crossref] [PubMed]

2011 (1)

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

2009 (2)

J. Schwiegerling, “Statistical generation of normal and post-refractive surgery wavefronts,” Clin. Exp. Optom. 92(3), 223–226 (2009).
[Crossref] [PubMed]

C. Buznego and W. B. Trattler, “Presbyopia-correcting intraocular lenses,” Curr. Opin. Ophthalmol. 20(1), 13–18 (2009).
[Crossref]

2007 (1)

2004 (2)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

2002 (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

1997 (1)

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vis. Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

1976 (1)

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vis. Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Akondi, V.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

V. Akondi and B. Vohnsen, “Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing,” Ophthalmic Physiol. Opt. 33(4), 434–443 (2013).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Alejandre, N.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Alonso-Sanz, J. R.

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Artal, P.

Ayala, D. B.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vis. Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

Brennan, N. A.

Budihal, R. P.

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

Buznego, C.

C. Buznego and W. B. Trattler, “Presbyopia-correcting intraocular lenses,” Curr. Opin. Ophthalmol. 20(1), 13–18 (2009).
[Crossref]

Charman, W. N.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vis. Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

de Gracia, P.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

Dorronsoro, C.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Garzon, N.

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Gatinel, D.

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refract. Surg. 39(7), 1093–1099 (2013).
[Crossref] [PubMed]

Gonzalez-Ramos, A.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Houbrechts, Y.

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refract. Surg. 39(7), 1093–1099 (2013).
[Crossref] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vis. Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vis. Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Kim, M. J.

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Lindacher, J. M.

Liou, H.

MacRae, S.

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Manzanera, S.

Marcos, S.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
[Crossref] [PubMed]

Martinez-Enriquez, E.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

Millan, M. S.

M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

Pascual, D.

Perez-Merino, P.

Pérez-Merino, P.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Poyales, F.

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Prieto, P. M.

Radhakrishnan, A.

Rios-Lopez, I.

M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Roopashree, M. B.

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

Sánchez-González, A.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

Sawides, L.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

Schwiegerling, J.

J. Schwiegerling, “Statistical generation of normal and post-refractive surgery wavefronts,” Clin. Exp. Optom. 92(3), 223–226 (2009).
[Crossref] [PubMed]

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics(SPIE Press, 2004).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Tchah, H.

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Trattler, W. B.

C. Buznego and W. B. Trattler, “Presbyopia-correcting intraocular lenses,” Curr. Opin. Ophthalmol. 20(1), 13–18 (2009).
[Crossref]

Vega, F.

M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Velasco-Ocana, M.

Vinas, M.

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

Vohnsen, B.

V. Akondi and B. Vohnsen, “Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing,” Ophthalmic Physiol. Opt. 33(4), 434–443 (2013).
[Crossref] [PubMed]

Weddell, S. J.

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

Yoon, G.

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Zhang, X.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Zheleznyak, L.

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Clin. Exp. Optom. (1)

J. Schwiegerling, “Statistical generation of normal and post-refractive surgery wavefronts,” Clin. Exp. Optom. 92(3), 223–226 (2009).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

C. Buznego and W. B. Trattler, “Presbyopia-correcting intraocular lenses,” Curr. Opin. Ophthalmol. 20(1), 13–18 (2009).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

M. S. Millan, F. Vega, and I. Rios-Lopez, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (3)

M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

D. Gatinel and Y. Houbrechts, “Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench,” J. Cataract Refract. Surg. 39(7), 1093–1099 (2013).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. MacRae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

J. Vis. (2)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(8), 322–328 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

V. Akondi and B. Vohnsen, “Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing,” Ophthalmic Physiol. Opt. 33(4), 434–443 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

M. B. Roopashree, V. Akondi, S. J. Weddell, and R. P. Budihal, “Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors,” Opt. Commun. 312(1), 23–30 (2014).
[Crossref]

Opt. Express (1)

Optica (1)

Vis. Res. (4)

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vis. Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vis. Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39(26), 4309–4323 (1999).
[Crossref]

Other (2)

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration with multifocal diffractive intraocular lenses,” Invest. Ophthalmol. Vis. Sci. (2017, in press).

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics(SPIE Press, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Trifocal diffractive IOL: (a) Comparison of TF VS ratio of the M-IOL (q) and its SimVis temporal profile, (qs) for two cases: nSimVis = 50 and nSimVis = 12. (b) The corresponding normalized time coefficients, ts, when nSimVis = 12. (c) Comparison of the 2-D correlation between the nominal ‘E’ image and the TF simulated images; simulated images were obtained with either the real M-IOL (c) or the tunable lens based SimVis (cs) with nSimVis = 12. The 2-D correlation between the TF simulated images obtained with the real M-IOL and SimVis (nSimVis = 12) is also shown. (d) Nominal ‘E’ image. (e) The TF simulated images obtained with the M-IOL and the SimVis (nSimVis = 12).

Fig. 2
Fig. 2

Segmented bifocal refractive IOL: (a) Comparison of TF VS ratio of the M-IOL (q) and its SimVis temporal profile, (qs) for two cases: nSimVis = 50 and nSimVis = 7. (b) The corresponding normalized time coefficients, ts, when nSimVis = 7. (c) Comparison of the 2-D correlation between the nominal ‘E’ image and the TF simulated images; simulated images were obtained with either the real M-IOL (c) or the tunable lens based SimVis (cs) with nSimVis = 7. The 2-D correlation between the TF simulated images obtained with the real M-IOL and SimVis (nSimVis = 7) is also shown. (d) Nominal ‘E’ image. (e) The TF simulated images obtained with the M-IOL and the SimVis (nSimVis = 7).

Fig. 3
Fig. 3

Refractive EDOF IOL: (a) Comparison of TF VS ratio of the M-IOL (q) and its SimVis temporal profile, (qs) for two cases: nSimVis = 50 and nSimVis = 23. (b) The corresponding normalized time coefficients, ts, when nSimVis = 23. (c) Comparison of the 2-D correlation between the nominal ‘E’ image and the TF simulated images; simulated images were obtained with either the real M-IOL (cs) or the tunable lens based SimVis (cs) with nSimVis = 23. The 2-D correlation between the TF simulated images obtained with the real M-IOL and SimVis (nSimVis = 23) is also shown. (d) The TF simulated images obtained with the M-IOL and the SimVis (nSimVis = 23).

Fig. 4
Fig. 4

The effect of sampling on the SimVis temporal profile optimization metric based on: (a) TF VS ratio ( q ˜, Eq. (4)) and (b) TF 2-D image correlation coefficient ( c ˜, Eq. (6)).

Fig. 5
Fig. 5

The effect of pupil diameter variations (at 3 mm, 4mm and 5mm) in terms of the TF simulated images for the EDOF M-IOL.

Fig. 6
Fig. 6

Effect of pupil size variations in a trifocal diffractive M-IOL: Comparison of the 4 mm and 3 mm pupil diameters in terms of (a) TF VS ratio and (b) TF correlation coefficient for the real M-IOL. Corresponding 4 mm and 3 mm SimVis TF curves (c) VS ratio and (d) correlation coefficient. (e) A comparison of the TF optical quality of the real M-IOL with 3 mm pupil diameter and corresponding SimVis that uses the time coefficients obtained for a 4 mm pupil diameter M-IOL. Here, a sampling of nSimVis = 12 was used in a trifocal diffractive M-IOL.

Fig. 7
Fig. 7

A comparison of the TF optical quality of the real M-IOL with 3 mm pupil diameter and corresponding SimVis that uses the time coefficients obtained for a 4 mm pupil diameter M-IOL in the case of segmented bifocal refractive M-IOL in terms of (a) TF VS ratio and (b) TF correlation coefficient and in the case of refractive EDOF M-IOL in terms of (c) TF VS ratio and (d) TF correlation coefficient.

Fig. 8
Fig. 8

Effect of aberrations on SimVis: A comparison of TF VS ratio and correlation coefficient for a real-IOL and SimVis in the presence of aberrated wavefronts–WF 1 (a)–(f) and WF 2 (g)–(l)–in the case of segmented bifocal refractive ((a), (b), (g) and (h)), trifocal diffractive ((c), (d), (i) and (j)), and refractive EDOF ((e), (f), (k) and (l)) M-IOLs. SimVis sampling is shown in the subfigure legends.

Fig. 9
Fig. 9

(a) Monochromatic TF VS ratio curves for the trifocal diffractive M-IOL at three different wavelengths: 475 nm, 555 nm, and 695 nm. (b) A comparison of the polychromatic TF VS ratio for the trifocal diffractive M-IOL and the corresponding SimVis with monochromatic time coefficients (555 nm) or polychromatic time coefficients. (c) A comparison of the 2-D correlation between the nominal ‘E’ image and the polychromatic TF simulated images. Images were obtained with either the real M-IOL or the SimVis profile (monochromatic or polychromatic time coefficients). (d) The polychromatic TF simulated images obtained with the M-IOL and the SimVis (monochromatic or polychromatic time coefficients).

Fig. 10
Fig. 10

(a) A single SimVis cycle with and without induced response delay (damped harmonic oscillator). (b) The effective time coefficients with and without the temporal dynamics of the tunable lens. (c) Comparison of the TF VS ratio with and without the inclusion of SimVis temporal dynamics.

Tables (1)

Tables Icon

Table 1 RMS of the two TF optical quality metrics (VS ratio and correlation coefficient) obtained between the profiles of real M-IOLs and SimVis with simulated wavefront aberrations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

q = i = 1 n ( a i ) ( Q i )
a i Σ a i = k t i Σ t i .
q = k ( Σ a i Σ t i ) i = 1 n ( t i ) ( Q i )
q ˜ = 1 n j = 1 n | q j q s , j q j |
VS ratio = C ( x , y ) O ( x , y ) d x d y C ( x , y ) O DL ( x , y ) d x d y .
c ˜ = 1 n j = 1 n | c j c s , j c j | .

Metrics