Abstract

Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~150×150μm2 is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a “guide star” for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1μm) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal’s criterion of 1/14 waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive optical versus spherical aberration corrections for in vivo brain imaging

Raphaël Turcotte, Yajie Liang, and Na Ji
Biomed. Opt. Express 8(8) 3891-3902 (2017)

Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

Kai Shen, Hui Lu, Sarfaraz Baig, and Michael R. Wang
Biomed. Opt. Express 8(11) 4887-4918 (2017)

Rapid adaptive remote focusing microscope for sensing of volumetric neural activity

Mantas Žurauskas, Oliver Barnstedt, Maria Frade-Rodriguez, Scott Waddell, and Martin J. Booth
Biomed. Opt. Express 8(10) 4369-4379 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).
  2. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  3. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
    [Crossref] [PubMed]
  4. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [Crossref] [PubMed]
  5. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
    [Crossref] [PubMed]
  6. E. J. Fernández, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [Crossref] [PubMed]
  7. F. A. Vera-Díaz, and N. Doble, The Human Eye and Adaptive Optics (INTECH Open Access Publisher, 2012).
  8. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
    [Crossref] [PubMed]
  9. D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
    [Crossref] [PubMed]
  10. R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
    [Crossref]
  11. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [Crossref] [PubMed]
  12. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
    [Crossref] [PubMed]
  13. R. K. Tyson, Principles of Adaptive Optics (CRC press, 2015).
  14. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  15. R. A. Leitgeb, A. Kumar, and W. Drexler, “Chapter 8 Frequency Domain Full-Field Optical Coherence Tomography,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford Publishing Pte. Ltd., 2016), pp. 303–322.
  16. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
    [Crossref]
  17. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
    [Crossref] [PubMed]
  18. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref] [PubMed]
  19. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” arXiv preprint arXiv:1605.03747 (2016).
  20. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  21. A. Kumar, A. R. Tumlinson, and R. Leitgeb, “Systems and methods for sub-aperture based aberration measurement and correction in interferometric imaging (US9247874 B2), ” (Google Patents, 2014).
  22. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [Crossref] [PubMed]
  23. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  24. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
    [Crossref] [PubMed]
  25. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [Crossref] [PubMed]
  26. S. T. Thurman and J. R. Fienup, “Phase-error correction in digital holography,” J. Opt. Soc. Am. A 25(4), 983–994 (2008).
    [Crossref] [PubMed]
  27. N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
  28. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” arXiv preprint arXiv:1605.02959 (2016).
  29. D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT (Conference Presentation),” in SPIE BiOS (International Society for Optics and Photonics, 2016), pp. 969704–969704–969701.
  30. N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
    [Crossref] [PubMed]
  31. L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
    [Crossref]
  32. D. Nankivil, A.-H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
    [Crossref] [PubMed]
  33. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  34. R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
    [Crossref] [PubMed]
  35. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  36. ANSI, “American National Standard for Safe Use of Lasers (ANSI Z136.1),” Laser Institute of America (2014).
  37. A. Y. Van Heugten and D. S. Durrie, “Integrated surgical microscope and wavefront sensor (US 20110267579 A1),” (Google Patents, 2011).
  38. H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
    [Crossref] [PubMed]
  39. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48(5), 810–817 (2009).
    [Crossref] [PubMed]
  40. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (London: Academic Press,| c1984 1 1984).
  41. Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
    [Crossref] [PubMed]

2015 (3)

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

2014 (9)

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

D. Nankivil, A.-H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

2011 (1)

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (2)

2006 (3)

2005 (3)

2004 (1)

2003 (2)

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).

J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
[Crossref] [PubMed]

Adie, S. G.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

Ahmad, A.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

Ahn, S. S.

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Ahnelt, P. K.

Artal, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

Barry, S.

Baumann, B.

Blatter, C.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Boppart, S. A.

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

Bower, A. J.

Bower, B. A.

Bradu, A.

Cable, A. E.

Capps, A. G.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Carney, P. S.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

Cense, B.

Choi, S.

Choi, W.

Dae Yu, K.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Dainty, C.

Dhalla, A.-H.

Drexler, W.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

E. J. Fernández, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[Crossref] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

Duker, J. S.

Durrie, D. S.

A. Y. Van Heugten and D. S. Durrie, “Integrated surgical microscope and wavefront sensor (US 20110267579 A1),” (Google Patents, 2011).

Farsiu, S.

Fechtig, D.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Felberer, F.

Fercher, A. F.

Fernández, E. J.

Fienup, J. R.

Fujimoto, J. G.

Gahm, N.

Gao, W.

Ginner, L.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Gologorsky, D.

H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
[Crossref] [PubMed]

Gong, W.

Graf, B. W.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

Gröschl, M.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Grulkowski, I.

Hamann, B.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Hemmati, H. D.

H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

Itoh, M.

Izatt, J. A.

Jayaraman, V.

Jones, S.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kamali, T.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kim, D. Y.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

Kocaoglu, O. P.

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

Kroisamer, J.-S.

Kumar, A.

Laut, S.

Lee, S.

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

Leitgeb, R.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Leitgeb, R. A.

Liu, J. J.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Liu, Y.-Z.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Lu, C. D.

Makita, S.

Merino, D.

Miller, D.

Miller, D. T.

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).

Miller, J. J.

Nakamura, Y.

Nankivil, D.

Olivier, S.

Olivier, S. S.

Panorgias, A.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Pineda, R.

H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
[Crossref] [PubMed]

Pircher, M.

Platzer, R.

Poddar, R.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

Podoleanu, A. G.

Potsaid, B.

Povazay, B.

Považay, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

Qu, J.

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).

Rha, J.

Sando, Y.

Sattmann, H.

Schmidt-Erfurth, U.

Schmoll, T.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Schuman, J. S.

Scott Carney, P.

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Shemonski, N. D.

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Sheppard, C. J. R.

Shia, K.

Si, K.

South, F. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Stevenson, S. B.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Sugisaka, J.

Thorn, K. E.

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).

Thurman, S. T.

Unterhuber, A.

Van Heugten, A. Y.

A. Y. Van Heugten and D. S. Durrie, “Integrated surgical microscope and wavefront sensor (US 20110267579 A1),” (Google Patents, 2011).

Wang, Q.

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

Werner, J. S.

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Zawadzki, R. J.

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

Zhang, Y.

Zhao, M.

Zotter, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. Scott Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Eye (Lond.) (1)

D. T. Miller, O. P. Kocaoglu, Q. Wang, and S. Lee, “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. J. Zawadzki, A. G. Capps, K. Dae Yu, A. Panorgias, S. B. Stevenson, B. Hamann, and J. S. Werner, “Progress on Developing Adaptive Optics–Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts,” IEEE J. Sel. Top. Quantum Electron. 20(2), 322–333 (2014).
[Crossref]

J. Biomed. Opt. (2)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, “In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography,” J. Biomed. Opt. 19(12), 126010 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Opt. Express (9)

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[Crossref] [PubMed]

E. J. Fernández, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

Opt. Lett. (3)

Photonics (1)

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Gröschl, and R. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Proc. SPIE (2)

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).

D. T. Miller, J. Qu, R. S. Jonnal, and K. E. Thorn, “Coherence gating and adaptive optics in the eye,” Proc. SPIE 4956, 65–72 (2003).

Semin. Ophthalmol. (1)

H. D. Hemmati, D. Gologorsky, and R. Pineda, “Intraoperative Wavefront Aberrometry in Cataract Surgery,” Semin. Ophthalmol. 27(5-6), 100–106 (2012).
[Crossref] [PubMed]

Vision Res. (1)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[Crossref] [PubMed]

Other (11)

R. A. Leitgeb, A. Kumar, and W. Drexler, “Chapter 8 Frequency Domain Full-Field Optical Coherence Tomography,” in Handbook of Full-Field Optical Coherence Microscopy (Pan Stanford Publishing Pte. Ltd., 2016), pp. 303–322.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proceedings of the National Academy of Sciences (2012).
[Crossref]

A. Kumar, A. R. Tumlinson, and R. Leitgeb, “Systems and methods for sub-aperture based aberration measurement and correction in interferometric imaging (US9247874 B2), ” (Google Patents, 2014).

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” arXiv preprint arXiv:1605.03747 (2016).

F. A. Vera-Díaz, and N. Doble, The Human Eye and Adaptive Optics (INTECH Open Access Publisher, 2012).

R. K. Tyson, Principles of Adaptive Optics (CRC press, 2015).

ANSI, “American National Standard for Safe Use of Lasers (ANSI Z136.1),” Laser Institute of America (2014).

A. Y. Van Heugten and D. S. Durrie, “Integrated surgical microscope and wavefront sensor (US 20110267579 A1),” (Google Patents, 2011).

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” arXiv preprint arXiv:1605.02959 (2016).

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT (Conference Presentation),” in SPIE BiOS (International Society for Optics and Photonics, 2016), pp. 969704–969704–969701.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (London: Academic Press,| c1984 1 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the fiber based SS OCT system using 1060 nm SSL. CL# are the collimators, T#: telescopes, DM: dichroic mirror, RM: retro-reflecting reference mirror, DCG: dispersion compensation glass and FC: fiber connector.
Fig. 2
Fig. 2 (a) Enface OCT image of microbeads (mean diameter ~10 µm) placed at 2 mm from the focus of the objective lens, (b) digitally focused image using DAO, (c) before and after profile plots across the beads marked by arrow in (b), (d) detected defocus phase by DAO, (e) P-V defocus error variation from the theoretical estimation for varying defocus distance for DAO and the SH-WFS. P-V defocus error measurements by SH-WFS were divided by a factor of 4 for comparison with DAO measurements. The measurements were obtained after the focus correction. ORG stands for original.
Fig. 3
Fig. 3 (a) Original small scanned FOV OCT enface image suffering from aberrations, (b) image after correction using wavefront error from SH-WFS, (c) image after correction using wavefront error from DAO, (d) before and after profile plots across the micro-beads marked by arrow in (c), (e) wavefront error detected using SH-WFS, (f) wavefront error detected using DAO, (g) plot of Zernike coefficients for SH-WFS, (h) plot of Zernike coefficients for DAO, (i) original large FOV scanned around the same location, (j) image after applying SH wavefront error in shown in (e), (k) image after applying DAO wavefront error shown in (f).
Fig. 4
Fig. 4 (a) Enface OCT image of the photo-receptor layer of human retina, (b) B-scan of human retina, (c) original small FOV scanned at the location shown by yellow dotted box in (a) and (b), (d) image after correction using wavefront error from SH-WFS, (e) image after correction using wavefront error from DAO, (f) before and after profile plots across the micro-beads marked by dotted ellipse in (c), (g) wavefront error detected using SH-WFS, (h) wavefront error detected using DAO, (i) plot of Zernike coefficients in waves for SH-WFS, (j) plot of Zernike coefficients in waves for DAO.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E i ( x,y )= r s ( x,y;z ){ [ h ill ( x,y;z )ϕ( x,y ) ][ h det ( x,y;z ) ϕ * ( x,y ) ] }
E i ( x,y )= r s ( x,y;z ) [ h ill ( x,y;z )ϕ( x,y ) ] 2
E w ( x ˜ , y ˜ )=F T 2D [ E i ' ( x,y ) ]
E i ' ( x,y )= r s ( x,y;z )[ h o ( x,y;z ) h i ( x,y;z ) ]
h ill ( x,y;z )= A i ( x,y )exp( ikz )exp[ ik 2z ( x 2 + y 2 ) ]
PS F oct = A i 2 ( x,y )exp( i2kz )exp[ ik z ( x 2 + y 2 ) ]
arg[ F T 2D ( PS F oct ) ]arg{ exp[ iπλz 2 ( f x 2 + f y 2 ) ] }= iπλz 2 ( f x 2 + f y 2 )
h o ( x,y;z )= h ill ( x,y;z )exp[ iπ λz ( x 2 + y 2 ) ]
h i ( x,y;z )F T 2D { exp[ iπλz( f x 2 + f y 2 ) ] }
E w F T 2D [ h o ( x,y;z ) ]F T 2D [ h i ( x,y;z ) ] exp[ i2πλz( f x 2 + f y 2 ) ]

Metrics