Abstract

A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Smartphone supported backlight illumination and image acquisition for microfluidic-based point-of-care testing

Gang Chen, Hui Hui Chai, Ling Yu, and Can Fang
Biomed. Opt. Express 9(10) 4604-4612 (2018)

Colorimetric analysis of saliva–alcohol test strips by smartphone-based instruments using machine-learning algorithms

Huisung Kim, Olumide Awofeso, SoMi Choi, Youngkee Jung, and Euiwon Bae
Appl. Opt. 56(1) 84-92 (2017)

Optical fiber smartphone spectrometer

Md Arafat Hossain, John Canning, Kevin Cook, and Abbas Jamalipour
Opt. Lett. 41(10) 2237-2240 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
    [Crossref] [PubMed]
  2. S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
    [Crossref] [PubMed]
  3. B. H. Estridge and A. P. Reynolds, Basic Clinical Laboratory Techniques (Delmar Cengage Learning, New York, 2012), Chap. 2.
  4. M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
    [Crossref] [PubMed]
  5. M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).
  6. I. C. Macdougal and E. Ritz, “The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target haemoglobin?” Nephrol. Dial. Transplant. 13(12), 3030–3033 (1998).
    [Crossref] [PubMed]
  7. T. Takubo and N. Tatsumi, “[Reference values for hematologic laboratory tests and hematologic disorders in the aged],” Rinsho Byori 48(3), 207–216 (2000).
    [PubMed]
  8. G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
    [Crossref] [PubMed]
  9. C. Lelubre and J.-L. Vincent, “Red blood cell transfusion in the critically ill patient,” Ann. Intensive Care 1(1), 43 (2011).
    [Crossref] [PubMed]
  10. S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
    [Crossref] [PubMed]
  11. J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
    [Crossref] [PubMed]
  12. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
    [Crossref] [PubMed]
  13. A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
    [Crossref] [PubMed]
  14. M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
    [Crossref] [PubMed]
  15. R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
    [Crossref] [PubMed]
  16. A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
    [Crossref] [PubMed]
  17. N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
    [Crossref] [PubMed]
  18. B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
    [Crossref] [PubMed]
  19. A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
    [Crossref] [PubMed]
  20. C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
    [Crossref] [PubMed]
  21. A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
    [Crossref] [PubMed]
  22. D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
    [Crossref] [PubMed]
  23. Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
    [Crossref] [PubMed]
  24. Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
    [Crossref] [PubMed]
  25. S. K. Thomas and C. J. Erik, “Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol,” J. Chem. Educ. 93, 1249–1252 (2016).
  26. A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
    [Crossref]
  27. R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
    [Crossref] [PubMed]
  28. Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
    [Crossref] [PubMed]
  29. H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
    [Crossref] [PubMed]
  30. E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
    [Crossref] [PubMed]
  31. L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
    [Crossref]
  32. C. Kanan and G. W. Cottrell, “Color-to-Grayscale: Does the Method Matter in Image Recognition?” PLoS One 7(1), e29740 (2012).
    [Crossref] [PubMed]
  33. C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
    [Crossref]
  34. S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
    [Crossref]
  35. G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
    [Crossref]
  36. P. V. Holland, “Measuring the volume of packed RBCs in donors,” Transfusion 41(3), 309–311 (2001).
    [Crossref] [PubMed]
  37. I. H. Robert, E. L. Samuel, and P. S. Thomas, Blood: Principles and Practice of Hematology (Lippincott Williams & Wilkins, Philadelphia, PA 19106, USA, 2002) Part 6.
  38. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
    [Crossref] [PubMed]
  39. H. Kim, O. Awofeso, S. Choi, Y. Jung, and E. Bae, “Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms,” Appl. Opt. 56(1), 84–92 (2017).
    [Crossref]

2017 (2)

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

H. Kim, O. Awofeso, S. Choi, Y. Jung, and E. Bae, “Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms,” Appl. Opt. 56(1), 84–92 (2017).
[Crossref]

2016 (1)

S. K. Thomas and C. J. Erik, “Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol,” J. Chem. Educ. 93, 1249–1252 (2016).

2015 (7)

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
[Crossref] [PubMed]

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

2014 (6)

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

2013 (11)

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
[Crossref]

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

2012 (3)

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

C. Kanan and G. W. Cottrell, “Color-to-Grayscale: Does the Method Matter in Image Recognition?” PLoS One 7(1), e29740 (2012).
[Crossref] [PubMed]

2011 (3)

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

C. Lelubre and J.-L. Vincent, “Red blood cell transfusion in the critically ill patient,” Ann. Intensive Care 1(1), 43 (2011).
[Crossref] [PubMed]

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

2009 (1)

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

2001 (1)

P. V. Holland, “Measuring the volume of packed RBCs in donors,” Transfusion 41(3), 309–311 (2001).
[Crossref] [PubMed]

2000 (1)

T. Takubo and N. Tatsumi, “[Reference values for hematologic laboratory tests and hematologic disorders in the aged],” Rinsho Byori 48(3), 207–216 (2000).
[PubMed]

1998 (1)

I. C. Macdougal and E. Ritz, “The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target haemoglobin?” Nephrol. Dial. Transplant. 13(12), 3030–3033 (1998).
[Crossref] [PubMed]

Adachi, C.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Adkins, J. A.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Akbas, R.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Ambachew, H.

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

An, H. Z.

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

Angus, S. V.

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

Asiri, H.

Awofeso, O.

Bae, E.

Barbosa, A. I.

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

Berg, B.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Berini, P.

Bever, C. R. S.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Birhaneselassie, M.

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

Bisha, B.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Burak Eral, H.

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

Burbano, J.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Chaitavon, K.

S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
[Crossref]

Chan, C. Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Chan, R. Y.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Chen, A.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Chen, S.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Cheng, F.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Choi, S.

Cicuta, P.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Clark, P. P.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Cortazar, B.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Cosentino Lagomarsino, M.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Cottrell, G. W.

C. Kanan and G. W. Cottrell, “Color-to-Grayscale: Does the Method Matter in Image Recognition?” PLoS One 7(1), e29740 (2012).
[Crossref] [PubMed]

Cramer, D. W.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Cunningham, B. T.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Daoud, J. T.

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Demirci, U.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Demircik, F.

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

Di Carlo, D.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Dinkova, P.

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

Dong, T.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Dorfman, K. D.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Doyle, P. S.

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

Edwards, A. D.

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

Edwards, D.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Erik, C. J.

S. K. Thomas and C. J. Erik, “Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol,” J. Chem. Educ. 93, 1249–1252 (2016).

Farooqui, Q.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Faucher, S. P.

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Feng, S.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Forst, T.

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Foudeh, A. M.

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Fu, E.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Gallegos, D.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Garcia-Melendrez, A.

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Garner, O. B.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Gebretsadkan, G.

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

Gehlot, P.

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

George, S.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Georgopoulou, S.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Giannoukas, A.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Goodridge, L. D.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Griffin, D. K.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Guo, F.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Guo, Y.

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Hagen, J. A.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Hammock, B. D.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Hanke, U.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Henry, C. S.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Hermanns, I.

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

Hoivik, N.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Holland, P. V.

P. V. Holland, “Measuring the volume of packed RBCs in donors,” Transfusion 41(3), 309–311 (2001).
[Crossref] [PubMed]

Huang, L.

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Huang, T. J.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Imato, T.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Intaravanne, Y.

S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
[Crossref]

Ishimatsu, R.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Ivanova, T.

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

Jaslove, J. M.

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Javer, A.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Jokerst, J. C.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Joon, S. S.

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Jung, Y.

Kanan, C.

C. Kanan and G. W. Cottrell, “Color-to-Grayscale: Does the Method Matter in Image Recognition?” PLoS One 7(1), e29740 (2012).
[Crossref] [PubMed]

Karanikolas, M.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Karsheva, M.

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

Kauffman, P.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Kelley-Loughnane, N.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Khimji, I.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Kim, A.

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

Kim, H.

Kim, J.

Kim, M.

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

Kim, S.

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

Krupin, O.

Lapsley, M. I.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Lei, X.

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Lelubre, C.

C. Lelubre and J.-L. Vincent, “Red blood cell transfusion in the critically ill patient,” Ann. Intensive Care 1(1), 43 (2011).
[Crossref] [PubMed]

Lewinski, M.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Lin, S. C.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Lin, Y.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Liu, Q.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Liu, R.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Lock, J. P.

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Long, K. D.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Long, Z.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Lowe, C. R.

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Lutz, B.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Lyon, M.

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Macdougal, I. C.

I. C. Macdougal and E. Ritz, “The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target haemoglobin?” Nephrol. Dial. Transplant. 13(12), 3030–3033 (1998).
[Crossref] [PubMed]

Martinez-Hurtado, J. L.

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Mentele, M. M.

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Mikroulis, D.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Murdock, R. C.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Musholt, P. B.

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Nakano, K.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Naruse, A.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Nath, P.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Nugent, E.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Ozcan, A.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Ozkan, H.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Pan, T.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Papautsky, I.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Park, T. S.

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

Peng, W.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Pentchev, I.

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

Pfützner, A.

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Pierce, M. C.

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Pires, N. M. M.

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Qiu, W.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Ramljak, S.

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Ramsey, S. A.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Regnier, F.

Reis, N. M.

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

Richards-Kortum, R.

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Ritz, E.

I. C. Macdougal and E. Ritz, “The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target haemoglobin?” Nephrol. Dial. Transplant. 13(12), 3030–3033 (1998).
[Crossref] [PubMed]

Safai, E. R.

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

Sang, C. K.

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Schipper, C.

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

Sclavi, B.

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

Shen, L.

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

Sidapra, K.

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

Stamoulis, K.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Stemple, C. C.

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

Stratton, Z. S.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Sumriddetchkajorn, S.

S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
[Crossref]

Sun, Z.

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Sung, I. B.

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Sungho, K.

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Tabrizian, M.

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Tait, R. N.

Takubo, T.

T. Takubo and N. Tatsumi, “[Reference values for hematologic laboratory tests and hematologic disorders in the aged],” Rinsho Byori 48(3), 207–216 (2000).
[PubMed]

Tassoudis, V.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Tatsumi, N.

T. Takubo and N. Tatsumi, “[Reference values for hematologic laboratory tests and hematologic disorders in the aged],” Rinsho Byori 48(3), 207–216 (2000).
[PubMed]

Tessema, K.

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

Thomas, S. K.

S. K. Thomas and C. J. Erik, “Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol,” J. Chem. Educ. 93, 1249–1252 (2016).

Tkaczyk, T. S.

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Tseng, D.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Tsilimingas, N.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Uddin, M. J.

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Vasconcellos, C. F. D.

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Veres, T.

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Vincent, J.-L.

C. Lelubre and J.-L. Vincent, “Red blood cell transfusion in the critically ill patient,” Ann. Intensive Care 1(1), 43 (2011).
[Crossref] [PubMed]

Vretzakis, G.

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

Wang, C.

Wang, H.

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Wang, J.

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Wang, R.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Wang, S.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Wei, F.

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Wei, Q.

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Weigum, S. E.

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Xiang, A.

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Xing, S.

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Yager, P.

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Yahiro, M.

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Yang, S.

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

Ye, B.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Yetisen, A. K.

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Yoon, J. Y.

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

Yu, H.

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Zhao, W.

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Zhao, X.

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

ACS Nano (1)

B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R. Y. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, O. B. Garner, and A. Ozcan, “Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays,” ACS Nano 9(8), 7857–7866 (2015).
[Crossref] [PubMed]

Anal. Chem. (2)

R. C. Murdock, L. Shen, D. K. Griffin, N. Kelley-Loughnane, I. Papautsky, and J. A. Hagen, “Optimization of a paper-based ELISA for a human performance biomarker,” Anal. Chem. 85(23), 11634–11642 (2013).
[Crossref] [PubMed]

J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, “Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens,” Anal. Chem. 84(6), 2900–2907 (2012).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

M. C. Pierce, S. E. Weigum, J. M. Jaslove, R. Richards-Kortum, and T. S. Tkaczyk, “Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost,” Ann. Biomed. Eng. 42(1), 231–240 (2014).
[Crossref] [PubMed]

Ann. Intensive Care (1)

C. Lelubre and J.-L. Vincent, “Red blood cell transfusion in the critically ill patient,” Ann. Intensive Care 1(1), 43 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomicrofluidics (1)

A. Chen, R. Wang, C. R. S. Bever, S. Xing, B. D. Hammock, and T. Pan, “Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay,” Biomicrofluidics 8(6), 064101 (2014).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron. 70, 5–14 (2015).
[Crossref] [PubMed]

M. Kim, A. Kim, S. Kim, and S. Yang, “Improvement of electrical blood hematocrit measurements under various plasma conditions using a novel hematocrit estimation parameter,” Biosens. Bioelectron. 35(1), 416–420 (2012).
[Crossref] [PubMed]

A. M. Foudeh, J. T. Daoud, S. P. Faucher, T. Veres, and M. Tabrizian, “Sub-femtomole detection of 16s rRNA from Legionella pneumophila using surface plasmon resonance imaging,” Biosens. Bioelectron. 52, 129–135 (2014).
[Crossref] [PubMed]

Eur. J. Clin. Microbiol. Infect. Dis. (1)

A. Xiang, F. Wei, X. Lei, Y. Liu, Y. Liu, and Y. Guo, “A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg,” Eur. J. Clin. Microbiol. Infect. Dis. 32(12), 1557–1564 (2013).
[Crossref] [PubMed]

Int. J. Blood Res. Disord. (1)

G. Gebretsadkan, K. Tessema, H. Ambachew, and M. Birhaneselassie, “The Comparison between Microhematocrit and Automated Methods for Hematocrit Determination,” Int. J. Blood Res. Disord. 2(1), 1–3 (2015).
[Crossref]

J. Cardiothorac. Surg. (1)

G. Vretzakis, S. Georgopoulou, K. Stamoulis, V. Tassoudis, D. Mikroulis, A. Giannoukas, N. Tsilimingas, and M. Karanikolas, “Monitoring of brain oxygen saturation (INVOS) in a protocol to direct blood transfusions during cardiac surgery: a prospective randomized clinical trial,” J. Cardiothorac. Surg. 8(1), 145 (2013).
[Crossref] [PubMed]

J. Chem. Educ. (1)

S. K. Thomas and C. J. Erik, “Teaching Beer’s Law and Absorption Spectrophotometry with a Smart Phone: A Substantially Simplified Protocol,” J. Chem. Educ. 93, 1249–1252 (2016).

J. Diabetes Sci. Technol. (2)

F. Demircik, S. Ramljak, I. Hermanns, A. Pfützner, and A. Pfützner, “Evaluation of hematocrit interference with MyStar extra and seven competitive devices,” J. Diabetes Sci. Technol. 9(2), 262–267 (2015).
[Crossref] [PubMed]

S. Ramljak, J. P. Lock, C. Schipper, P. B. Musholt, T. Forst, M. Lyon, and A. Pfützner, “Hematocrit interference of blood glucose meters for patient self-measurement,” J. Diabetes Sci. Technol. 7(1), 179–189 (2013).
[Crossref] [PubMed]

J. Lab. Autom. (1)

C. C. Stemple, S. V. Angus, T. S. Park, and J. Y. Yoon, “Smartphone-Based Optofluidic Lab-on-a-Chip for Detecting Pathogens from Blood,” J. Lab. Autom. 19(1), 35–41 (2014).
[Crossref] [PubMed]

J. Univ. Chem. Technol. Metallurgy. (1)

M. Karsheva, P. Dinkova, I. Pentchev, and T. Ivanova, “Blood Rheology-A Key for blood circulation in human body,” J. Univ. Chem. Technol. Metallurgy. 44(1), 50–54 (2009).

J. Vis. Commun. Image R. (1)

L. Huang, W. Zhao, Z. Sun, and J. Wang, “An advanced gradient histogram and its application for contrast and gradient enhancement,” J. Vis. Commun. Image R. 31, 86–100 (2015).
[Crossref]

Lab Chip (5)

D. Gallegos, K. D. Long, H. Yu, P. P. Clark, Y. Lin, S. George, P. Nath, and B. T. Cunningham, “Label-free biodetection using a smartphone,” Lab Chip 13(11), 2124–2132 (2013).
[Crossref] [PubMed]

Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S. C. Lin, and T. J. Huang, “Optofluidic imaging: now and beyond,” Lab Chip 13(1), 17–24 (2013).
[Crossref] [PubMed]

Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman, “Microfluidic chemostat for measuring single cell dynamics in bacteria,” Lab Chip 13(5), 947–954 (2013).
[Crossref] [PubMed]

H. Z. An, E. R. Safai, H. Burak Eral, and P. S. Doyle, “Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography,” Lab Chip 13(24), 4765–4774 (2013).
[Crossref] [PubMed]

S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip 11(20), 3411–3418 (2011).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid. Nanofluidics 10(1), 29–35 (2011).
[Crossref] [PubMed]

Nephrol. Dial. Transplant. (1)

I. C. Macdougal and E. Ritz, “The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target haemoglobin?” Nephrol. Dial. Transplant. 13(12), 3030–3033 (1998).
[Crossref] [PubMed]

Opt. Express (1)

PLoS One (1)

C. Kanan and G. W. Cottrell, “Color-to-Grayscale: Does the Method Matter in Image Recognition?” PLoS One 7(1), e29740 (2012).
[Crossref] [PubMed]

Rinsho Byori (1)

T. Takubo and N. Tatsumi, “[Reference values for hematologic laboratory tests and hematologic disorders in the aged],” Rinsho Byori 48(3), 207–216 (2000).
[PubMed]

Sci. Rep. (1)

Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, and W. Peng, “Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms,” Sci. Rep. 5(1), 12864 (2015), doi:.
[Crossref] [PubMed]

Sens. Actuators B Chem. (3)

C. K. Sang, M. J. Uddin, I. B. Sung, K. Sungho, and S. S. Joon, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

S. Sumriddetchkajorn, K. Chaitavon, and Y. Intaravanne, “Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water,” Sens. Actuators B Chem. 182, 592–597 (2013).
[Crossref]

A. K. Yetisen, J. L. Martinez-Hurtado, A. Garcia-Melendrez, C. F. D. Vasconcellos, and C. R. Lowe, “A smartphone algorithm with interphone repeatability for the analysis of colorimetric tests,” Sens. Actuators B Chem. 196, 156–160 (2014).
[Crossref]

Sensors (Basel) (1)

N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors (Basel) 14(8), 15458–15479 (2014).
[Crossref] [PubMed]

Talanta (1)

R. Ishimatsu, A. Naruse, R. Liu, K. Nakano, M. Yahiro, C. Adachi, and T. Imato, “An organic thin film photodiode as a portable photodetector for the detection of alkylphenol polyethoxylates by a flow fluorescence-immunoassay on magnetic microbeads in a microchannel,” Talanta 117, 139–145 (2013).
[Crossref] [PubMed]

Transfusion (1)

P. V. Holland, “Measuring the volume of packed RBCs in donors,” Transfusion 41(3), 309–311 (2001).
[Crossref] [PubMed]

Other (2)

I. H. Robert, E. L. Samuel, and P. S. Thomas, Blood: Principles and Practice of Hematology (Lippincott Williams & Wilkins, Philadelphia, PA 19106, USA, 2002) Part 6.

B. H. Estridge and A. P. Reynolds, Basic Clinical Laboratory Techniques (Delmar Cengage Learning, New York, 2012), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Conceptual view of smartphone-based lab-on-a-chip (LOC) platform for a histogram analysis of blood hematocrit.
Fig. 2
Fig. 2 Working steps of the developed Android app showing a histogram of the gray intensity of a hematocrit-contained microchannel.
Fig. 3
Fig. 3 Visualization of the pixels in gray images, which have the same gray intensity. The gray image inside the red rectangular box corresponds to the highest pixel numbers, i.e. histogram peak for the different hematocrit levels.
Fig. 4
Fig. 4 (a). Screenshots of the histogram-based image analysis of the hematocrit levels of 10%, 20%, 30%, and 45% (hematocrit levels within microchannels on the left side), and (b). gray intensity of the corresponding hematocrit levels using the Android-based Histogram app.
Fig. 5
Fig. 5 (a). Screenshots of the app-generated histograms for the multi-channel image of the 10%, 20%, 30%, and 45% hematocrits (intra-microchannel hematocrit levels are on the left side) and, (b~c). algorithm-derived gray intensities of corresponding hematocrits.
Fig. 6
Fig. 6 Screenshots of the app-generated histograms for each of the three-channel LOC devices (on top) containing 10% and 30% hematocrits in the sample and control channels, respectively. The histogram beneath corresponds to the above channel image, and the channel images above in Fig. 6(a), (b), and (c) were captured with an increasing optical luminance of 200, 215 and 220 cd/m2 respectively.
Fig. 7
Fig. 7 Detailed gray intensities of hematocrits ranging from 10% to 60%. (a). The gray intensities were determined under the optimized optical condition using the proposed Histogram App operated by android OS, (b). the gray intensities obtained from PC-based ImageJ software.

Tables (1)

Tables Icon

Table 1 Comparative peak intensity for control channel and sample channel.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y x 1 = y 2 y 1 x 2 x 1 , y x 2 = y 3 y 2 x 3 x 2 , y x n = y n y n1 x n x n1

Metrics