Abstract

In vivo spectroscopic measurements have the proven potential to provide important insight about the changes in tissue during the development of malignancies and thus help to diagnose tissue pathologies. Extraction of intrinsic data in the presence of varying amounts of scatterers and absorbers offers great challenges in the development of such techniques to the clinical level. Fabrication of optical phantoms, tailored to the biochemical as well as morphological features of the target tissue, can help to generate a spectral database for a given optical spectral measurement system. Such databases, along with appropriate pattern matching algorithms, could be integrated with in vivo measurements for any desired quantitative analysis of the target tissue. This paper addresses the fabrication of such soft, photo stable, thin bilayer phantoms, mimicking skin tissue in layer dimensions and optical properties. The performance evaluation of the fabricated set of phantoms is carried out using a portable fluorescence spectral measurement system. The alterations in flavin adenine dinucleotide (FAD)–a tissue fluorophore that provides important information about dysplastic progressions in tissues associated with cancer development based on changes in emission spectra–fluorescence with varied concentrations of absorbers and scatterers present in the phantom are analyzed and the results are presented. Alterations in the emission intensity, shift in emission wavelength and broadening of the emission spectrum were found to be potential markers in the assessment of biochemical changes that occur during the progression of dysplasia.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy

Narasimhan Rajaram, Timothy J. Aramil, Kelvin Lee, Jason S. Reichenberg, Tri H. Nguyen, and James W. Tunnell
Appl. Opt. 49(2) 142-152 (2010)

Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach

Nrusingh C. Biswal, Sharad Gupta, Nirmalya Ghosh, and Asima Pradhan
Opt. Express 11(24) 3320-3331 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
    [Crossref] [PubMed]
  2. S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
    [PubMed]
  3. T. G. Papazoglou, “Malignancies and atherosclerotic plaque diagnosis--is laser induced fluorescence spectroscopy the ultimate solution?” J. Photochem. Photobiol. B 28(1), 3–11 (1995).
    [Crossref] [PubMed]
  4. A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
    [Crossref]
  5. R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
    [Crossref]
  6. V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
    [Crossref] [PubMed]
  7. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
    [Crossref] [PubMed]
  8. T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
    [PubMed]
  9. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [Crossref] [PubMed]
  10. P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
    [Crossref] [PubMed]
  11. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32(19), 3585–3595 (1993).
    [Crossref] [PubMed]
  12. G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
    [Crossref]
  13. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
    [Crossref] [PubMed]
  14. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, and S. L. Jacques, “Time-resolved photon emission from layered turbid media,” Appl. Opt. 35(4), 719–728 (1996).
    [Crossref] [PubMed]
  15. A. Kienle, T. Glanzmann, G. Wagnières, and H. Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37(28), 6852–6862 (1998).
    [Crossref] [PubMed]
  16. J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
    [Crossref] [PubMed]
  17. B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
    [Crossref] [PubMed]
  18. M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
    [Crossref] [PubMed]
  19. R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
    [Crossref]
  20. Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
    [Crossref] [PubMed]
  21. Y. Wu, P. Xi, J. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt. Express 13(2), 382–388 (2005).
    [Crossref] [PubMed]
  22. L. Marcu, P. M. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics. (CRC Press, 2014).
  23. V. V. Ghukasyan and A. A. Heikal, Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications (CRC Press, 2014).
  24. T. N. Helm, “Dermatologic Manifestations of Metastatic Carcinomas,” http://emedicine.medscape.com/article/1101058-overview#a10
  25. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
    [Crossref] [PubMed]
  26. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
    [Crossref] [PubMed]
  27. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
    [Crossref] [PubMed]
  28. Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
    [Crossref] [PubMed]
  29. Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
    [Crossref] [PubMed]
  30. N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11(24), 3320–3331 (2003).
    [Crossref] [PubMed]
  31. V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
    [Crossref]
  32. B. S. S. Anand and N. Sujatha, “Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range,” Meas. Sci. Technol. 23(2), 025502 (2012).
    [Crossref]
  33. K. Vishwanath, W. Zhong, M. Close, and M. A. Mycek, “Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms,” Opt. Express 14(17), 7776–7788 (2006).
    [Crossref] [PubMed]
  34. G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
    [Crossref]
  35. C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35(10), 1780–1792 (1996).
    [Crossref] [PubMed]
  36. N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
    [Crossref] [PubMed]
  37. M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
    [Crossref]
  38. R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
    [Crossref] [PubMed]
  39. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
    [Crossref] [PubMed]
  40. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  41. W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
    [Crossref] [PubMed]
  42. T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
    [Crossref] [PubMed]
  43. J. Mirkovic, C. Lau, S. McGee, C. Crum, K. Badizadegan, M. Feld, and E. Stier, “Detecting high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopy and per-patient normalization,” Biomed. Opt. Express 2(10), 2917–2925 (2011).
    [Crossref] [PubMed]
  44. S. A. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,“ http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).
  45. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
    [Crossref] [PubMed]
  46. S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  47. F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4(5), 696–708 (2013).
    [Crossref] [PubMed]
  48. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref] [PubMed]
  49. C. Maetzler, “MATLAB functions for Mie scattering and absorption,” Research Report no: 2002–08, University of Bern, (2002).
  50. J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
    [Crossref] [PubMed]
  51. S. Cohen, Biophotonics in Pathology: Pathology at the Crossroads, Vol. 185 (IOS Press, 2013).

2016 (2)

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

2013 (1)

2012 (2)

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

B. S. S. Anand and N. Sujatha, “Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range,” Meas. Sci. Technol. 23(2), 025502 (2012).
[Crossref]

2011 (2)

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

J. Mirkovic, C. Lau, S. McGee, C. Crum, K. Badizadegan, M. Feld, and E. Stier, “Detecting high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopy and per-patient normalization,” Biomed. Opt. Express 2(10), 2917–2925 (2011).
[Crossref] [PubMed]

2010 (4)

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref] [PubMed]

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
[Crossref]

2009 (2)

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

2007 (3)

Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
[Crossref] [PubMed]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

2006 (4)

V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
[Crossref]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref] [PubMed]

K. Vishwanath, W. Zhong, M. Close, and M. A. Mycek, “Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms,” Opt. Express 14(17), 7776–7788 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Wu, P. Xi, J. Qu, T. H. Cheung, and M. Y. Yu, “Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue,” Opt. Express 13(2), 382–388 (2005).
[Crossref] [PubMed]

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

2004 (1)

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

2003 (4)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11(24), 3320–3331 (2003).
[Crossref] [PubMed]

2002 (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

2000 (1)

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

1999 (1)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

1998 (3)

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

A. Kienle, T. Glanzmann, G. Wagnières, and H. Bergh, “Investigation of two-layered turbid media with time-resolved reflectance,” Appl. Opt. 37(28), 6852–6862 (1998).
[Crossref] [PubMed]

1997 (1)

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

1996 (2)

1995 (3)

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

T. G. Papazoglou, “Malignancies and atherosclerotic plaque diagnosis--is laser induced fluorescence spectroscopy the ultimate solution?” J. Photochem. Photobiol. B 28(1), 3–11 (1995).
[Crossref] [PubMed]

1994 (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

1993 (1)

1992 (1)

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

1987 (1)

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Abi Haidar, D.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Adams, W. P.

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

Akguen, N.

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

Akgun, N.

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Alfano, R. R.

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Amelink, A.

Anand, B. S. S.

B. S. S. Anand and N. Sujatha, “Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range,” Meas. Sci. Technol. 23(2), 025502 (2012).
[Crossref]

Anastasopoulou, M.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Anvari, B.

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

Aramil, T. J.

Arifler, D.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

Au, K.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

Ayers, F.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

Badizadegan, K.

J. Mirkovic, C. Lau, S. McGee, C. Crum, K. Badizadegan, M. Feld, and E. Stier, “Detecting high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopy and per-patient normalization,” Biomed. Opt. Express 2(10), 2917–2925 (2011).
[Crossref] [PubMed]

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Baenziger, O.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Bargo, P.

Beck, G. C.

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

Bergh, H.

Bevilacqua, F.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Bigner, D.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Biswal, N.

Brown, S. A.

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Casale, M. A.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Chance, B.

Chang, S. K.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Charon, Y.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Charvet, I.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Chen, K.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Cheung, T. H.

Choy, D.

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Close, M.

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Cothren, R. M.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Crum, C.

Cui, W. J.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

Dai, T.

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

de Bruijn, H. S.

Depeursinge, C.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Deutsch, T. F.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Drakaki, H.

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

Drezek, R.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Durkin, A.

Durkin, A. J.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

Duval, M. A.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Ebihara, A.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Edetsberger, M.

A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
[Crossref]

Elackattu, A.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Fago, S.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Feld, M.

Feld, M. S.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32(19), 3585–3595 (1993).
[Crossref] [PubMed]

Fitzmaurice, M.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Follen, M.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Gallagher, G.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Gamm, U. A.

Garcia-Allende, P. B.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Gardner, C. M.

Gerritsen, H. C.

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

Ghosh, N.

Gillenwater, A.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

Glanzmann, T.

Gorpas, D.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Grant, G.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Grillone, G.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Gupta, S.

V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
[Crossref]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11(24), 3320–3331 (2003).
[Crossref] [PubMed]

Ha, M.

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

Ha, R. Y.

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

Hamzeh, H.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Hielscher, A. H.

Hu, F.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Jacques, S. L.

Jung, B.

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

Kabani, S.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Karlas, A.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Kienle, A.

Klemm, U.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Koch, M.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Koehler, G.

A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
[Crossref]

Kolli, V. R.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Kollias, N.

Kondru, C.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

Kramer, J. R.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Krasieva, T. B.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Lam, W.

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Lau, C.

Lee, B. Y.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

Lee, K.

Leh, B.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Lenarduzzi, R.

Li, J.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Li, S.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Liaw, L. H. L.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Liu, H.

Liu, Q.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
[Crossref] [PubMed]

Löwik, C. W. G. M.

Mahadevan, A.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Makropoulou, M. I.

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

Malpica, A.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Mardirossian, V.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Marin, N.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Marquet, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Martin, M.

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

McGee, S.

J. Mirkovic, C. Lau, S. McGee, C. Crum, K. Badizadegan, M. Feld, and E. Stier, “Detecting high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopy and per-patient normalization,” Biomed. Opt. Express 2(10), 2917–2925 (2011).
[Crossref] [PubMed]

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Meda, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Menard, L.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Messadi, D.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Mirkovic, J.

J. Mirkovic, C. Lau, S. McGee, C. Crum, K. Badizadegan, M. Feld, and E. Stier, “Detecting high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopy and per-patient normalization,” Biomed. Opt. Express 2(10), 2917–2925 (2011).
[Crossref] [PubMed]

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Mitchell, M. F.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Mol, I. M.

Mycek, M. A.

Nguyen, T. H.

Nishioka, N. S.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Nojima, K.

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

Ntziachristos, V.

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Opher, E.

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Ory, G.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Osann, K.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Ostrander, L. E.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

Overholt, B. F.

Palero, J. A.

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

Panjehpour, M.

Papazoglou, T. G.

T. G. Papazoglou, “Malignancies and atherosclerotic plaque diagnosis--is laser induced fluorescence spectroscopy the ultimate solution?” J. Photochem. Photobiol. B 28(1), 3–11 (1995).
[Crossref] [PubMed]

Park, J.

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

Pavlova, I.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Petras, R.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Pikkula, B. M.

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

Pilon, L.

Pistey, R.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Pradhan, A.

V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
[Crossref]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11(24), 3320–3331 (2003).
[Crossref] [PubMed]

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Qu, J.

Qu, J. Y.

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref] [PubMed]

Raja, V. S.

V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
[Crossref]

Rajaram, N.

Ramanujam, N.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Rava, R. P.

Reichenberg, J. S.

Richards-Kortum, R.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Robinson, D. J.

Römer, T. J.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Rück, A.

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Rueck, A. C.

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

Saager, R. B.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

Sacks, P. G.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Savage, H. E.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Schantz, S. P.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Serafetinides, A. A.

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

Shaha, A. R.

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Shahzad, A.

A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
[Crossref]

Siebert, R.

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

Silva, E.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Sivak, M. V.

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Snoeks, T. J. A.

Sokolov, K.

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Sry, K.

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

St Ghislain, M.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Stamatakos, G.

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

Steiner, R.

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Steiner, R. W.

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

Sterenborg, H. J.

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

Stier, E.

Sujatha, N.

B. S. S. Anand and N. Sujatha, “Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range,” Meas. Sci. Technol. 23(2), 025502 (2012).
[Crossref]

Tang, G.

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

Thomsen, S.

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

Thueler, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Tittel, F. K.

Tseng, S.-H.

Tunnell, J. W.

van der Ploeg van den Heuvel, A.

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

van der Ploeg-van den Heuvel, A.

van Driel, P. B. A. A.

van Leeuwen-van Zaane, F.

Vermeulen, B.

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

Vishwanath, K.

Vo-Dinh, T.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
[Crossref] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Wagnières, G.

Wang, L. V.

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

Wang, Z.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Welch, A. J.

C. M. Gardner, S. L. Jacques, and A. J. Welch, “Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence,” Appl. Opt. 35(10), 1780–1792 (1996).
[Crossref] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wilder-Smith, P.

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

Wilson, C.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Wintenberg, A.

Wolf, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

Wu, J.

Wu, Y.

Xi, P.

Yu, C. C.

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Yu, M. Y.

Yu, S.

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

Yudovsky, D.

Zhadin, N. N.

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

Zhang, Y.

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

Zhong, W.

Am. J. Gastroenterol. (1)

T. J. Römer, M. Fitzmaurice, R. M. Cothren, R. Richards-Kortum, R. Petras, M. V. Sivak, and J. R. Kramer., “Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: implications for spectroscopic diagnosis,” Am. J. Gastroenterol. 90(1), 81–87 (1995).
[PubMed]

Am. J. Surg. (1)

V. R. Kolli, A. R. Shaha, H. E. Savage, P. G. Sacks, M. A. Casale, and S. P. Schantz, “Native cellular fluorescence can identify changes in epithelial thickness in-vivo in the upper aerodigestive tract,” Am. J. Surg. 170(5), 495–498 (1995).
[Crossref] [PubMed]

Ann. Otol. Rhinol. Laryngol. (1)

S. McGee, V. Mardirossian, A. Elackattu, J. Mirkovic, R. Pistey, G. Gallagher, S. Kabani, C. C. Yu, Z. Wang, K. Badizadegan, G. Grillone, and M. S. Feld, “Anatomy-based algorithms for detecting oral cancer using reflectance and fluorescence spectroscopy,” Ann. Otol. Rhinol. Laryngol. 118(11), 817–826 (2009).
[PubMed]

Appl. Opt. (6)

Appl. Spectrosc. Rev. (1)

A. Shahzad, M. Edetsberger, and G. Koehler, “Fluorescence spectroscopy: An emerging excellent diagnostic tool in medical sciences,” Appl. Spectrosc. Rev. 45(1), 1–11 (2010).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (2)

J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally Resolved Multiphoton Imaging of In vivo And Excised Mouse Skin Tissues,” Biophys. J. 93(3), 992–1007 (2007).
[Crossref] [PubMed]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[Crossref] [PubMed]

Gynecol. Oncol. (1)

N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52(1), 31–38 (1994).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

R. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23(10), 1806–1811 (1987).
[Crossref]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng. 37(6), 632–639 (1990).
[Crossref] [PubMed]

J. Biomed. Opt. (8)

N. N. Zhadin and R. R. Alfano, “Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment,” J. Biomed. Opt. 3(2), 171–186 (1998).
[Crossref] [PubMed]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt. 11(2), 024008 (2006).
[Crossref] [PubMed]

Q. Liu, G. Grant, J. Li, Y. Zhang, F. Hu, S. Li, C. Wilson, K. Chen, D. Bigner, and T. Vo-Dinh, “Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics,” J. Biomed. Opt. 16(3), 037004 (2011).
[Crossref] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt. 8(3), 495–503 (2003).
[Crossref] [PubMed]

J. Park, M. Ha, S. Yu, and B. Jung, “Fabrication of various optical tissue phantoms by the spin-coating method,” J. Biomed. Opt. 21(6), 065008 (2016).
[Crossref] [PubMed]

B. Leh, R. Siebert, H. Hamzeh, L. Menard, M. A. Duval, Y. Charon, and D. Abi Haidar, “Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy,” J. Biomed. Opt. 17(10), 108001 (2012).
[Crossref] [PubMed]

M. Anastasopoulou, M. Koch, D. Gorpas, A. Karlas, U. Klemm, P. B. Garcia-Allende, and V. Ntziachristos, “Comprehensive phantom for interventional fluorescence molecular imaging,” J. Biomed. Opt. 21(9), 091309 (2016).
[Crossref] [PubMed]

Y. Wu and J. Y. Qu, “Autofluorescence spectroscopy of epithelial tissues,” J. Biomed. Opt. 11(5), 054023 (2006).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

T. G. Papazoglou, “Malignancies and atherosclerotic plaque diagnosis--is laser induced fluorescence spectroscopy the ultimate solution?” J. Photochem. Photobiol. B 28(1), 3–11 (1995).
[Crossref] [PubMed]

Lasers Med. Sci. (1)

G. C. Beck, N. Akgun, A. Rück, and R. Steiner, “Design and characterization of a tissue phantom system for optical diagnostics,” Lasers Med. Sci. 13(3), 160–171 (1998).
[Crossref]

Lasers Surg. Med. (2)

A. Ebihara, T. B. Krasieva, L. H. L. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, “Detection and diagnosis of oral cancer by light-induced fluorescence,” Lasers Surg. Med. 32(1), 17–24 (2003).
[Crossref] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12(1), 63–78 (1992).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

B. S. S. Anand and N. Sujatha, “Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range,” Meas. Sci. Technol. 23(2), 025502 (2012).
[Crossref]

Opt. Express (5)

Photochem. Photobiol. (1)

I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, “Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy,” Photochem. Photobiol. 77(5), 550–555 (2003).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol. 44(7), 1743–1753 (1999).
[Crossref] [PubMed]

T. Dai, B. M. Pikkula, L. V. Wang, and B. Anvari, “Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation,” Phys. Med. Biol. 49(21), 4861–4877 (2004).
[Crossref] [PubMed]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Plast. Reconstr. Surg. (1)

R. Y. Ha, K. Nojima, W. P. Adams, and S. A. Brown, “Analysis of facial skin thickness: defining the relative thickness index,” Plast. Reconstr. Surg. 115(6), 1769–1773 (2005).
[Crossref] [PubMed]

Proc. SPIE (4)

R. B. Saager, C. Kondru, K. Au, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE 7567, 756706 (2010).
[Crossref]

G. C. Beck, N. Akguen, A. C. Rueck, and R. W. Steiner, “Developing optimized tissue phantom systems for optical biopsies,” Proc. SPIE 3197, 76–85 (1997).
[Crossref]

M. I. Makropoulou, H. Drakaki, G. Stamatakos, and A. A. Serafetinides, “Quantitative estimation of absorbing chromophores in tissue simulators based on laser-induced spectroscopy and scattering measurements,” Proc. SPIE 4162, 76–85 (2000).
[Crossref]

V. S. Raja, S. Gupta, and A. Pradhan, “Recovery of intrinsic fluorescence of tissue mimicking model media and human breast tissues from spatially resolved fluorescence and simultaneous evaluation of optical transport parameters,” Proc. SPIE 6091, 609104 (2006).
[Crossref]

Other (6)

C. Maetzler, “MATLAB functions for Mie scattering and absorption,” Research Report no: 2002–08, University of Bern, (2002).

S. A. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,“ http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1999).

L. Marcu, P. M. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics. (CRC Press, 2014).

V. V. Ghukasyan and A. A. Heikal, Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications (CRC Press, 2014).

T. N. Helm, “Dermatologic Manifestations of Metastatic Carcinomas,” http://emedicine.medscape.com/article/1101058-overview#a10

S. Cohen, Biophotonics in Pathology: Pathology at the Crossroads, Vol. 185 (IOS Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectral profiles for (a) 142µM Cardio green (b) Hemoglobin (c) FAD used in the optical phantom fabrication.

Fig. 2
Fig. 2

Scanning electron microscope image of the fabricated phantom (two layers are shown along with the glass substrate).

Fig. 3
Fig. 3

Experimental setup (a) Schematic (b) Photograph.

Fig. 4
Fig. 4

Fluorescence spectrum of the phantom sets with 0.45% volume fraction of polystyrene in both the layers and varying concentrations of FAD and Hb.

Fig. 5
Fig. 5

Fluorescence spectrum of phantom sets with 100μM FAD, 15μM Hb and varying volume fractions of polystyrene microspheres in layer 1 and layer 2.

Fig. 6
Fig. 6

Fluorescence spectrum from phantom sets mimicking normal and dysplasia conditions.

Fig. 7
Fig. 7

FAD fluorescence from liquid phantoms without addition of scatterers and absorbers.

Tables (3)

Tables Icon

Table 1 Bilayer Phantom composition

Tables Icon

Table 2 Scattering coefficient (µs) and anisotropy values for varying volume fraction of polystyrene beads at excitation (450nm) and emission (526nm) wavelengths of FAD

Tables Icon

Table 3 Absorption coefficient (µa) of FAD and Hb at excitation (450nm) and emission (526nm) wavelengths of FAD

Metrics