Abstract

Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

Alex J. Walsh, Joe T. Sharick, Melissa C. Skala, and Hope T. Beier
Biomed. Opt. Express 7(4) 1385-1399 (2016)

Application of ultrafast gold luminescence to measuring the instrument response function for multispectral multiphoton fluorescence lifetime imaging

Clifford B. Talbot, Rakesh Patalay, Ian Munro, Sean Warren, Fulvio Ratto, Paolo Matteini, Roberto Pini, H. Georg Breunig, Karsten König, Antony C. Chu, Gordon W. Stamp, Mark A. A. Neil, Paul M. W. French, and Chris Dunsby
Opt. Express 19(15) 13848-13861 (2011)

Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels

Rakesh Patalay, Clifford Talbot, Yuriy Alexandrov, Ian Munro, Mark A. A. Neil, Karsten König, Paul M. W. French, Anthony Chu, Gordon W. Stamp, and Chris Dunsby
Biomed. Opt. Express 2(12) 3295-3308 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  4. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
    [Crossref] [PubMed]
  5. E. B. van Munster and T. W. J. Gadella, “Fluorescence Lifetime Imaging Microscopy (FLIM),” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, 2005), pp. 143–175.
  6. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
    [Crossref] [PubMed]
  7. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  8. W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
    [Crossref] [PubMed]
  9. M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
    [Crossref] [PubMed]
  10. L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications,” Meas. Sci. Technol. 28(1), 012003 (2017).
    [Crossref]
  11. M. G. Giacomelli, Y. Sheikine, H. Vardeh, J. L. Connolly, and J. G. Fujimoto, “Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging,” Biomed. Opt. Express 6(11), 4317–4325 (2015).
    [Crossref] [PubMed]
  12. Y. Won, S. Moon, W. Yang, D. Kim, W.-T. Han, and D. Y. Kim, “High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method,” Opt. Express 19(4), 3396–3405 (2011).
    [Crossref] [PubMed]
  13. S. Moon, Y. Won, and D. Y. Kim, “Analog mean-delay method for high-speed fluorescence lifetime measurement,” Opt. Express 17(4), 2834–2849 (2009).
    [Crossref] [PubMed]
  14. S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
    [Crossref] [PubMed]
  15. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref] [PubMed]
  16. Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
    [Crossref] [PubMed]
  17. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006).
    [Crossref] [PubMed]
  18. Bewersdorf and Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191(1), 28–38 (1998).
    [Crossref]
  19. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
    [Crossref] [PubMed]
  20. C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
    [Crossref] [PubMed]
  21. T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
    [Crossref]
  22. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express 15(5), 2454–2458 (2007).
    [Crossref] [PubMed]
  23. R. Kawakami, K. Sawada, Y. Kusama, Y.-C. Fang, S. Kanazawa, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode,” Biomed. Opt. Express 6(3), 891–901 (2015).
    [Crossref] [PubMed]
  24. S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
    [Crossref]
  25. M. Eibl, S. Karpf, H. Hakert, D. Weng, T. Blömker, and R. Huber, “Pulse-to-pulse wavelength switching of diode based fiber laser for multi-color multi-photon imaging,” Proc. SPIE. Fiber Lasers XIV: Technology and Systems 10083 (2017).
  26. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
    [Crossref] [PubMed]
  27. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
    [Crossref] [PubMed]
  28. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
    [Crossref] [PubMed]
  29. J. M. Mayrhofer, F. Haiss, D. Haenni, S. Weber, M. Zuend, M. J. P. Barrett, K. D. Ferrari, P. Maechler, A. S. Saab, J. L. Stobart, M. T. Wyss, H. Johannssen, H. Osswald, L. M. Palmer, V. Revol, C.-D. Schuh, C. Urban, A. Hall, M. E. Larkum, E. Rutz-Innerhofer, H. U. Zeilhofer, U. Ziegler, and B. Weber, “Design and performance of an ultra-flexible two-photon microscope for in vivo research,” Biomed. Opt. Express 6(11), 4228–4237 (2015).
    [Crossref] [PubMed]
  30. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  31. K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
    [Crossref]
  32. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  33. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  34. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17(26), 24013–24019 (2009).
    [Crossref] [PubMed]
  35. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
    [Crossref] [PubMed]
  36. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
    [Crossref] [PubMed]
  37. T. Wang, T. Pfeiffer, E. Regar, W. Wieser, H. van Beusekom, C. T. Lancee, G. Springeling, I. Krabbendam, A. F. W. van der Steen, R. Huber, and G. van Soest, “Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography,” Biomed. Opt. Express 6(12), 5021–5032 (2015).
    [Crossref] [PubMed]
  38. T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
    [Crossref] [PubMed]
  39. C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
    [Crossref] [PubMed]

2017 (1)

L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications,” Meas. Sci. Technol. 28(1), 012003 (2017).
[Crossref]

2016 (2)

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
[Crossref] [PubMed]

2015 (7)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
[Crossref]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, Y. Kusama, Y.-C. Fang, S. Kanazawa, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode,” Biomed. Opt. Express 6(3), 891–901 (2015).
[Crossref] [PubMed]

J. M. Mayrhofer, F. Haiss, D. Haenni, S. Weber, M. Zuend, M. J. P. Barrett, K. D. Ferrari, P. Maechler, A. S. Saab, J. L. Stobart, M. T. Wyss, H. Johannssen, H. Osswald, L. M. Palmer, V. Revol, C.-D. Schuh, C. Urban, A. Hall, M. E. Larkum, E. Rutz-Innerhofer, H. U. Zeilhofer, U. Ziegler, and B. Weber, “Design and performance of an ultra-flexible two-photon microscope for in vivo research,” Biomed. Opt. Express 6(11), 4228–4237 (2015).
[Crossref] [PubMed]

M. G. Giacomelli, Y. Sheikine, H. Vardeh, J. L. Connolly, and J. G. Fujimoto, “Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging,” Biomed. Opt. Express 6(11), 4317–4325 (2015).
[Crossref] [PubMed]

T. Wang, T. Pfeiffer, E. Regar, W. Wieser, H. van Beusekom, C. T. Lancee, G. Springeling, I. Krabbendam, A. F. W. van der Steen, R. Huber, and G. van Soest, “Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography,” Biomed. Opt. Express 6(12), 5021–5032 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (4)

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

Y. Won, S. Moon, W. Yang, D. Kim, W.-T. Han, and D. Y. Kim, “High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method,” Opt. Express 19(4), 3396–3405 (2011).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

2008 (2)

2007 (1)

2006 (3)

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2000 (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

1998 (1)

Bewersdorf and Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191(1), 28–38 (1998).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1977 (1)

K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[Crossref]

Abreu-Afonso, J.

Achilefu, S.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

Adler, D. C.

Ahlrichs, A.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Andersen, P. E.

André, R.

Barrett, M. J. P.

Baumgartl, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Becker, W.

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

Benson, O.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Bewersdorf,

Bewersdorf and Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191(1), 28–38 (1998).
[Crossref]

Biedermann, B.

Biedermann, B. R.

Blanquet, V.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Connolly, J. L.

Couderc, V.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dietzek, B.

Díez, A.

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Draxinger, W.

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Eibl, M.

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
[Crossref] [PubMed]

S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
[Crossref]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Eigenwillig, C. M.

Erbert, G.

Erdmann, R.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Falnes, J.

K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[Crossref]

Fang, Y.-C.

Ferrari, K. D.

Fujimoto, J. G.

Giacomelli, M. G.

Gottschall, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Guo, H.

Haenni, D.

Haiss, F.

Hall, A.

Han, W.-T.

Hansen, K. P.

Hashimoto, T.

Hasler, K.-H.

Hell,

Bewersdorf and Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191(1), 28–38 (1998).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hibi, T.

Hirvonen, L. M.

L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications,” Meas. Sci. Technol. 28(1), 012003 (2017).
[Crossref]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Horton, N. G.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Hsu, K.

Huber, R.

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
[Crossref] [PubMed]

T. Wang, T. Pfeiffer, E. Regar, W. Wieser, H. van Beusekom, C. T. Lancee, G. Springeling, I. Krabbendam, A. F. W. van der Steen, R. Huber, and G. van Soest, “Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography,” Biomed. Opt. Express 6(12), 5021–5032 (2015).
[Crossref] [PubMed]

S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
[Crossref]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
[Crossref] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17(26), 24013–24019 (2009).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Hüttmann, G.

Ito, H.

Jauregui, C.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Jensen, O. B.

Jirauschek, C.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17(26), 24013–24019 (2009).
[Crossref] [PubMed]

Johannssen, H.

Kanazawa, S.

Kano, H.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Karpf, S.

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

Kawakami, R.

Kell, G.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Kernbach, M.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Kim, D.

Kim, D. Y.

Klein, T.

Kobat, D.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Kozawa, Y.

Krabbendam, I.

Kusama, Y.

Lancee, C. T.

Larkum, M. E.

Lefort, C.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Leproux, P.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Lévêque, P.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Limpert, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Maechler, P.

Magnol, L.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Marschall, S.

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Mayrhofer, J. M.

Meyer, T.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Moon, S.

Nemoto, T.

O’Connor, R. P.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Osswald, H.

Palmer, L. M.

Palte, G.

Pedersen, C.

Pfeiffer, T.

Popp, J.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Rahn, H.-J.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

Regar, E.

Reinholz, F.

Revol, V.

Röhlicke, T.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Rothhardt, M.

Rutz-Innerhofer, E.

Saab, A. S.

Sato, K.

Sato, S.

Sauer, B.

Sawada, K.

Schell, A. W.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Schmitt, M.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Schuh, C.-D.

Selanger, K. A.

K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[Crossref]

Sheikine, Y.

Sikkeland, T.

K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[Crossref]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Springeling, G.

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Srinivasan, V. J.

Stobart, J. L.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Suhling, K.

L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications,” Meas. Sci. Technol. 28(1), 012003 (2017).
[Crossref]

Sumpf, B.

Svoboda, K.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Taira, K.

Takashima, K.

Taniguchi, H.

Tanushi, Y.

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Todor, S.

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

Tombelaine, V.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

Tünnermann, A.

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Urban, C.

van Beusekom, H.

van der Steen, A. F. W.

van Soest, G.

Vardeh, H.

Wahl, M.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Wang, T.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weber, B.

Weber, S.

Wieser, W.

T. Wang, T. Pfeiffer, E. Regar, W. Wieser, H. van Beusekom, C. T. Lancee, G. Springeling, I. Krabbendam, A. F. W. van der Steen, R. Huber, and G. van Soest, “Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography,” Biomed. Opt. Express 6(12), 5021–5032 (2015).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
[Crossref] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
[Crossref] [PubMed]

Wojtkowski, M.

Won, Y.

Wyss, M. T.

Xu, C.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Yang, W.

Yasuda, R.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Yoda, T.

Yokoyama, H.

Yokoyama, M.

Zeilhofer, H. U.

Ziegler, U.

Zuend, M.

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Biomed. Opt. Express (7)

M. G. Giacomelli, Y. Sheikine, H. Vardeh, J. L. Connolly, and J. G. Fujimoto, “Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging,” Biomed. Opt. Express 6(11), 4317–4325 (2015).
[Crossref] [PubMed]

R. Kawakami, K. Sawada, Y. Kusama, Y.-C. Fang, S. Kanazawa, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode,” Biomed. Opt. Express 6(3), 891–901 (2015).
[Crossref] [PubMed]

J. M. Mayrhofer, F. Haiss, D. Haenni, S. Weber, M. Zuend, M. J. P. Barrett, K. D. Ferrari, P. Maechler, A. S. Saab, J. L. Stobart, M. T. Wyss, H. Johannssen, H. Osswald, L. M. Palmer, V. Revol, C.-D. Schuh, C. Urban, A. Hall, M. E. Larkum, E. Rutz-Innerhofer, H. U. Zeilhofer, U. Ziegler, and B. Weber, “Design and performance of an ultra-flexible two-photon microscope for in vivo research,” Biomed. Opt. Express 6(11), 4228–4237 (2015).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Hüttmann, and R. Huber, “Two-photon microscopy using fiber-based nanosecond excitation,” Biomed. Opt. Express 7(7), 2432–2440 (2016).
[Crossref] [PubMed]

T. Wang, T. Pfeiffer, E. Regar, W. Wieser, H. van Beusekom, C. T. Lancee, G. Springeling, I. Krabbendam, A. F. W. van der Steen, R. Huber, and G. van Soest, “Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography,” Biomed. Opt. Express 6(12), 5021–5032 (2015).
[Crossref] [PubMed]

T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
[Crossref] [PubMed]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Lévêque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref] [PubMed]

J. Microsc. (2)

W. Becker, “Fluorescence lifetime imaging--techniques and applications,” J. Microsc. 247(2), 119–136 (2012).
[Crossref] [PubMed]

Bewersdorf and Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191(1), 28–38 (1998).
[Crossref]

J. Phys. Chem. (1)

K. A. Selanger, J. Falnes, and T. Sikkeland, “Fluorescence lifetime studies of Rhodamine 6G in methanol,” J. Phys. Chem. 81(20), 1960–1963 (1977).
[Crossref]

Laser Photonics Rev. (1)

T. Gottschall, T. Meyer, M. Baumgartl, C. Jauregui, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy,” Laser Photonics Rev. 9(5), 435–451 (2015).
[Crossref]

Meas. Sci. Technol. (1)

L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications,” Meas. Sci. Technol. 28(1), 012003 (2017).
[Crossref]

Nat. Commun. (2)

C. M. Eigenwillig, W. Wieser, S. Todor, B. R. Biedermann, T. Klein, C. Jirauschek, and R. Huber, “Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers,” Nat. Commun. 4, 1848 (2013).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Nat. Methods (2)

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Neuron (1)

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Opt. Express (11)

Y. Won, S. Moon, W. Yang, D. Kim, W.-T. Han, and D. Y. Kim, “High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method,” Opt. Express 19(4), 3396–3405 (2011).
[Crossref] [PubMed]

S. Moon, Y. Won, and D. Y. Kim, “Analog mean-delay method for high-speed fluorescence lifetime measurement,” Opt. Express 17(4), 2834–2849 (2009).
[Crossref] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

Y. Kusama, Y. Tanushi, M. Yokoyama, R. Kawakami, T. Hibi, Y. Kozawa, T. Nemoto, S. Sato, and H. Yokoyama, “7-ps optical pulse generation from a 1064-nm gain-switched laser diode and its application for two-photon microscopy,” Opt. Express 22(5), 5746–5753 (2014).
[Crossref] [PubMed]

H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006).
[Crossref] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029–4047 (2008).
[Crossref] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express 18(15), 15820–15831 (2010).
[Crossref] [PubMed]

K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express 15(5), 2454–2458 (2007).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17(26), 24013–24019 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

S. Karpf, M. Eibl, and R. Huber, “Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser,” Proc. SPIE 9536, 953616 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (2)

E. B. van Munster and T. W. J. Gadella, “Fluorescence Lifetime Imaging Microscopy (FLIM),” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, 2005), pp. 143–175.

M. Eibl, S. Karpf, H. Hakert, D. Weng, T. Blömker, and R. Huber, “Pulse-to-pulse wavelength switching of diode based fiber laser for multi-color multi-photon imaging,” Proc. SPIE. Fiber Lasers XIV: Technology and Systems 10083 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Basic concept of the single pulse FLIM setup. An arbitrary waveform generator (AWG) provides trigger and timing signals for the laser pulse generation and the digitization. Excitation pulses are provided by an all fiber master oscillator power amplifier (MOPA). Briefly, the output of a laser diode (LD) is modulated to short pulses by an electro optic modulator (EOM), driven by a high speed pulse generator (PG). These typically 100 ps seed pulses with 1 MHz repetition rate are amplified by ytterbium doped fiber amplifiers (YDFA) to ~1 kW of peak power. The fiber output gets collimated (C) and galvanometric mirrors (GM) are used for beam steering to raster-scan the sample. There, one single pulse has enough energy to excite many fluorophores so that many fluorescence photons can be detected by a photomultiplier tube (PMT). A fast time response of the PMT and high bandwidth of the analog to digital converter (ADC) ensure a high time resolution for accurate lifetime measurements. SL: scan lens; TL1, TL2: tube lens; CL: condenser lens; SP: short pass filter; DM: dichroic mirror.
Fig. 2
Fig. 2 Instrument response function (IRF) determination with second harmonic signal (SHG) of Urea crystals. Blue curves indicate measurements, red curves Gaussian fits. a) unaveraged SHG signal of a single excitation pulse at pixel P1 as a representative of an IRF. The FWHM of a Gaussian fit is 1.34 ns b) 512 × 512 pixel image of Urea crystal acquired with a single pulse per pixel at a pixel rate of 1 MHz acquired within 670 ms (raw data acquisition time 260ms, see text). The intensity is displayed on a logarithmic scale to better visualize dim features. The coloring represents the FWHM of a Gaussian fit of a single pixel. The homogeneous color distribution indicates that the variation of the FWHM of the systems time response is small. c) Histograms of the center position and the FWHM of the Gaussian fits of all pixels of image b). Scale bar 100 µm.
Fig. 3
Fig. 3 Single exponential decay of Rhodamine 6G dissolved in methanol. a) Intensity image, size 0.5 × 0.5 mm at 1024 × 1024 pixel acquired within 1.9 s (raw data acquisition time: 1.0 s, see text) b) SP-FLIM image with 3x3 pixel binning for the lifetime map. A region of interest (ROI) was selected to determine the lifetime variation (see text) c) Single exponential decay lifetime fit of a 3x3 binned pixel taking IRF into account. Scale bar 100 µm.
Fig. 4
Fig. 4 SP-FLIM images of a convalaria majalis stem. The upper images show a region of 0.5 × 0.5 mm2 with a resolution of 512 × 512 pixel. 3x3 pixels were binned for lifetime measurements. a) Single pulse excitation per pixel at a pixel rate of 1 MHz, the total acquisition time was 670 ms (see text). b) The same region 4 × averaged, acquired within 2.7 s. c) 1.2 × 1.2 mm2 at 1024 × 1024 pixel resolution, acquired within 7.6 s. d) Zoom-in into a region of interest. Scale bar 100 µm.
Fig. 5
Fig. 5 Individual colorings of different lifetime regions of Fig. 4 b). 512 × 512 pixel, 1 MHz pixel rate, 4 × averaged, total acquisition time 2.7 s. a) Lifetime histogram over all pixels. b) - e) Individually colored areas distinguished by different lifetime bins representing various functional sites of the plant stem. f) TPEF intensity. g) Overlay of colored images.

Metrics