Abstract

Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifocus structured illumination microscopy for fast volumetric super-resolution imaging

Sara Abrahamsson, Hans Blom, Ana Agostinho, Daniel C. Jans, Aurelie Jost, Marcel Müller, Linnea Nilsson, Kristoffer Bernhem, Talley J. Lambert, Rainer Heintzmann, and Hjalmar Brismar
Biomed. Opt. Express 8(9) 4135-4140 (2017)

Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

Wenyan Guo, Xiuli Liu, Yurong Liu, Yadong Gang, Xiaobin He, Yao Jia, Fangfang Yin, Pei Li, Fei Huang, Hongfu Zhou, Xiaojun Wang, Hui Gong, Qingming Luo, Fuqiang Xu, and Shaoqun Zeng
Biomed. Opt. Express 8(7) 3281-3288 (2017)

Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering

Yun Yu, Juqiang Lin, Duo Lin, Shangyuan Feng, Weiwei Chen, Zufang Huang, Hao Huang, and Rong Chen
Biomed. Opt. Express 8(9) 4108-4121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
    [Crossref] [PubMed]
  2. T. Klingström and D. Plewczynski, “Protein-protein interaction and pathway databases, a graphical review,” Brief. Bioinform. 12(6), 702–713 (2011).
    [Crossref] [PubMed]
  3. Q. H. Yang and L. Li, “Yeast two-hybrid system and its application on proteomics,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3), 221–225 (1999).
    [PubMed]
  4. S. C. Masters, “Co-immunoprecipitation from transfected cells,” Methods Mol. Biol. 261, 337–350 (2004).
    [PubMed]
  5. M. B. Einarson, E. N. Pugacheva, and J. R. Orlinick, “GST Pull-down,” CSH protocols 2007, pdb prot4757 (2007).
    [Crossref]
  6. N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
    [Crossref] [PubMed]
  7. C. D. Hu, A. V. Grinberg, and T. K. Kerppola, Visualization of Protein Interactions In Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis (Wiley,2005),Chap.19.
  8. P. A. Vidi, J. A. Przybyla, C. D. Hu, and V. J. Watts, Visualization of G Protein-Coupled Receptor (GPCR) Interactions in Living Cells using Bimolecular Fluorescence Complementation (BiFC) (Wiley,2010),Chapter 5.
  9. K. A. Wong and J. P. O’Bryan, “Bimolecular fluorescence complementation,” J. Vis. Exp. 50, 2643 (2011).
    [PubMed]
  10. T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
    [Crossref] [PubMed]
  11. A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
    [Crossref] [PubMed]
  12. Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
    [PubMed]
  13. F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
    [Crossref] [PubMed]
  14. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
    [Crossref] [PubMed]
  15. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
    [Crossref] [PubMed]
  16. S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
    [Crossref] [PubMed]
  17. S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
    [Crossref] [PubMed]
  18. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
    [Crossref] [PubMed]
  19. S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
    [Crossref] [PubMed]
  20. S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
    [Crossref] [PubMed]
  21. M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
    [Crossref] [PubMed]
  22. M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
    [PubMed]
  23. T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
    [PubMed]
  24. Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
    [Crossref] [PubMed]
  25. L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
    [Crossref] [PubMed]
  26. D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
    [Crossref] [PubMed]
  27. S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
    [Crossref] [PubMed]
  28. P. J. Verveer, O. Rocks, A. G. Harpur, and P. I. Bastiaens, “Measuring FRET by sensitized emission,” CSH protocols 2006(2006).
    [Crossref]
  29. Y. Chen and A. Periasamy, “Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei,” J. Fluoresc. 16(1), 95–104 (2006).
    [Crossref] [PubMed]
  30. C. D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol. 21(5), 539–545 (2003).
    [Crossref] [PubMed]
  31. M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
    [Crossref] [PubMed]
  32. S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
    [PubMed]
  33. M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
    [Crossref] [PubMed]
  34. Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
    [Crossref] [PubMed]
  35. L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
    [Crossref] [PubMed]
  36. X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
    [Crossref] [PubMed]

2016 (5)

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

2015 (1)

J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
[Crossref] [PubMed]

2014 (4)

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

2013 (2)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

2012 (3)

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

2011 (2)

K. A. Wong and J. P. O’Bryan, “Bimolecular fluorescence complementation,” J. Vis. Exp. 50, 2643 (2011).
[PubMed]

T. Klingström and D. Plewczynski, “Protein-protein interaction and pathway databases, a graphical review,” Brief. Bioinform. 12(6), 702–713 (2011).
[Crossref] [PubMed]

2010 (1)

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

2007 (3)

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

2006 (2)

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

Y. Chen and A. Periasamy, “Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei,” J. Fluoresc. 16(1), 95–104 (2006).
[Crossref] [PubMed]

2005 (4)

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

2004 (1)

S. C. Masters, “Co-immunoprecipitation from transfected cells,” Methods Mol. Biol. 261, 337–350 (2004).
[PubMed]

2003 (1)

C. D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol. 21(5), 539–545 (2003).
[Crossref] [PubMed]

2001 (1)

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

1999 (1)

Q. H. Yang and L. Li, “Yeast two-hybrid system and its application on proteomics,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3), 221–225 (1999).
[PubMed]

1998 (1)

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Adams, J. M.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Agustina, L.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Alseikhan, B. A.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

Ávila, R.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Banaszynski, L. A.

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
[Crossref] [PubMed]

Beli, P.

J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
[Crossref] [PubMed]

Berry, G.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Betzig, E.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Biteen, J. S.

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

Brakemann, T.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

Broude, N. E.

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

Cantor, C. R.

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

Castilla, C.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Chang, L.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Chen, D. H.

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Chen, L.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Chen, M.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Chen, X.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Chen, Y.

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

Y. Chen and A. Periasamy, “Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei,” J. Fluoresc. 16(1), 95–104 (2006).
[Crossref] [PubMed]

Chen, Y. Z.

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

Chmyrov, A.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

Chung, J. H.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Cui, Z.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

d’Este, E.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

Dedecker, P.

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

Deng, X.

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

Dewson, G.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Duan, H.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Duwé, S.

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

Eggeling, C.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Erickson, M. G.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

Fletcher, J. I.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Flores, M. L.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Gordon, G. W.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Grotjohann, T.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

Hahm, S. H.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Han, S. H.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Han, Y. S.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Hancock, J. F.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Harding, A.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

He, W.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Heim, R.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Hell, S. W.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Herman, B.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Hertel, F.

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Hu, C. D.

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

C. D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol. 21(5), 539–545 (2003).
[Crossref] [PubMed]

Hua, Y. L.

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

Hua, Z. C.

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Huang, D. C.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Huang, T.

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

Hwang, K. Y.

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Inder, K.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Jakobs, S.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Japón, M. A.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Jiang, C. Z.

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Kang, L. W.

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Keller, J.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

Kerppola, T. K.

C. D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol. 21(5), 539–545 (2003).
[Crossref] [PubMed]

Klingström, T.

T. Klingström and D. Plewczynski, “Protein-protein interaction and pathway databases, a graphical review,” Brief. Bioinform. 12(6), 702–713 (2011).
[Crossref] [PubMed]

Kong, X.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Kwon, I. C.

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Lee, S. A.

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

Lee, S. F.

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

Lee, Y. R.

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Li, D.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Li, K. J.

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Li, L.

Q. H. Yang and L. Li, “Yeast two-hybrid system and its application on proteomics,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3), 221–225 (1999).
[PubMed]

Li, W.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Lin, L. J.

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

Lin, X. W.

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Linder, K.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

Liu, C. W.

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
[Crossref] [PubMed]

Liu, H.

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

Liu, S.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Luo, J. H.

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

Mahajan, N. P.

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Masters, S. C.

S. C. Masters, “Co-immunoprecipitation from transfected cells,” Methods Mol. Biol. 261, 337–350 (2004).
[PubMed]

McCullough, R. M.

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

Mo, G. C.

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

Naik, E.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Nam, K. H.

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Nan, X.

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

Natori, Y.

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

Nickerson, A.

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

O’Bryan, J. P.

K. A. Wong and J. P. O’Bryan, “Bimolecular fluorescence complementation,” J. Vis. Exp. 50, 2643 (2011).
[PubMed]

Ozawa, T.

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

Park, J. H.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Park, J. W.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Parton, R. G.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Peng, J.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Periasamy, A.

Y. Chen and A. Periasamy, “Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei,” J. Fluoresc. 16(1), 95–104 (2006).
[Crossref] [PubMed]

Peterson, B. Z.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

Plewczynski, D.

T. Klingström and D. Plewczynski, “Protein-protein interaction and pathway databases, a graphical review,” Brief. Bioinform. 12(6), 702–713 (2011).
[Crossref] [PubMed]

Plowman, S.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Ponjavic, A.

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

Qiu, S.

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

Ratz, M.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

Reuss, M.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

Ruiz-Borrego, M.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Sáez, C.

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Sato, M.

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

Sengupta, P.

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

Shcherbakova, D. M.

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

Shyu, Y. J.

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

Siv, C.

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

Su, Q. P.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Sun, H.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Sun, Y.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Tao, Y.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Testa, I.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

Tian, T.

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Tran, A. H.

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Umezawa, Y.

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

Valencia-Burton, M.

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

Verkhusha, V. V.

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

Wagner, S. A.

J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
[Crossref] [PubMed]

Wandless, T. J.

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
[Crossref] [PubMed]

Wang, S.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Wei, A.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Willis, S. N.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

Wong, K. A.

K. A. Wong and J. P. O’Bryan, “Bimolecular fluorescence complementation,” J. Vis. Exp. 50, 2643 (2011).
[PubMed]

Wu, Q.

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

Xing, D.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Xu, P.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Xue, B.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Xue, R.

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

Yang, F.

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

Yang, J.

J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
[Crossref] [PubMed]

Yang, Q. H.

Q. H. Yang and L. Li, “Yeast two-hybrid system and its application on proteomics,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3), 221–225 (1999).
[PubMed]

Yue, D. T.

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

Zhang, J.

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Zhang, M.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Zhang, X. E.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Zhang, Z.

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Zhu, Y.

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

ACS Nano (3)

S. A. Lee, A. Ponjavic, C. Siv, S. F. Lee, and J. S. Biteen, “Nanoscopic cellular imaging: confinement broadens understanding,” ACS Nano 10(9), 8143–8153 (2016).
[Crossref] [PubMed]

S. Wang, X. Chen, L. Chang, R. Xue, H. Duan, and Y. Sun, “GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy,” ACS Nano 10(10), 9136–9144 (2016).
[Crossref] [PubMed]

M. Chen, S. Liu, W. Li, Z. Zhang, X. Zhang, X. E. Zhang, and Z. Cui, “Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes,” ACS Nano 10(9), 8482–8490 (2016).
[Crossref] [PubMed]

Annu. Rev. Biophys. (1)

D. M. Shcherbakova, P. Sengupta, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photocontrollable fluorescent proteins for superresolution imaging,” Annu. Rev. Biophys. 43(1), 303–329 (2014).
[Crossref] [PubMed]

Biotechniques (1)

Y. J. Shyu, H. Liu, X. Deng, and C. D. Hu, “Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions,” Biotechniques 40(1), 61–66 (2006).
[Crossref] [PubMed]

BMC Mol. Biol. (1)

L. Agustina, S. H. Hahm, S. H. Han, A. H. Tran, J. H. Chung, J. H. Park, J. W. Park, and Y. S. Han, “Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation,” BMC Mol. Biol. 15(1), 17 (2014).
[Crossref] [PubMed]

Breast Cancer Res. Treat. (1)

M. L. Flores, C. Castilla, R. Ávila, M. Ruiz-Borrego, C. Sáez, and M. A. Japón, “Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction,” Breast Cancer Res. Treat. 133(3), 917–928 (2012).
[Crossref] [PubMed]

Brief. Bioinform. (1)

T. Klingström and D. Plewczynski, “Protein-protein interaction and pathway databases, a graphical review,” Brief. Bioinform. 12(6), 702–713 (2011).
[Crossref] [PubMed]

Cell Reports (1)

F. Hertel, G. C. Mo, S. Duwé, P. Dedecker, and J. Zhang, “RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells,” Cell Reports 14(2), 390–400 (2016).
[Crossref] [PubMed]

eLife (1)

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
[Crossref] [PubMed]

Front. Genet. (1)

J. Yang, S. A. Wagner, and P. Beli, “Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics,” Front. Genet. 6, 344 (2015).
[Crossref] [PubMed]

Genes Dev. (1)

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik, J. I. Fletcher, J. M. Adams, and D. C. Huang, “Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins,” Genes Dev. 19(11), 1294–1305 (2005).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, “Characterization of the FKBP.rapamycin.FRB ternary complex,” J. Am. Chem. Soc. 127(13), 4715–4721 (2005).
[Crossref] [PubMed]

J. Biol. Chem. (1)

S. Qiu, Y. L. Hua, F. Yang, Y. Z. Chen, and J. H. Luo, “Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer,” J. Biol. Chem. 280(26), 24923–24930 (2005).
[Crossref] [PubMed]

J. Fluoresc. (1)

Y. Chen and A. Periasamy, “Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei,” J. Fluoresc. 16(1), 95–104 (2006).
[Crossref] [PubMed]

J. Microsc. (1)

S. Wang, K. J. Li, X. W. Lin, C. Z. Jiang, D. H. Chen, Q. Wu, and Z. C. Hua, “Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement,” J. Microsc. 248(1), 58–65 (2012).
[Crossref] [PubMed]

J. Vis. Exp. (1)

K. A. Wong and J. P. O’Bryan, “Bimolecular fluorescence complementation,” J. Vis. Exp. 50, 2643 (2011).
[PubMed]

Methods Mol. Biol. (1)

S. C. Masters, “Co-immunoprecipitation from transfected cells,” Methods Mol. Biol. 261, 337–350 (2004).
[PubMed]

Mol. Imaging (1)

S. Wang, Y. Chen, Q. Wu, and Z. C. Hua, “Detection of Fas-associated death domain and its variants’ self-association by fluorescence resonance energy transfer in living cells,” Mol. Imaging 12(2), 111–120 (2013).
[PubMed]

Mol. Imaging Biol. (1)

Y. R. Lee, J. H. Park, S. H. Hahm, L. W. Kang, J. H. Chung, K. H. Nam, K. Y. Hwang, I. C. Kwon, and Y. S. Han, “Development of bimolecular fluorescence complementation using Dronpa for visualization of protein-protein interactions in cells,” Mol. Imaging Biol. 12(5), 468–478 (2010).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

C. D. Hu and T. K. Kerppola, “Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis,” Nat. Biotechnol. 21(5), 539–545 (2003).
[Crossref] [PubMed]

N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, “Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer,” Nat. Biotechnol. 16(6), 547–552 (1998).
[Crossref] [PubMed]

Nat. Cell Biol. (1)

T. Tian, A. Harding, K. Inder, S. Plowman, R. G. Parton, and J. F. Hancock, “Plasma membrane nanoswitches generate high-fidelity Ras signal transduction,” Nat. Cell Biol. 9(8), 905–914 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Liu, D. Xing, Q. P. Su, Y. Zhu, J. Zhang, X. Kong, B. Xue, S. Wang, H. Sun, Y. Tao, and Y. Sun, “Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space,” Nat. Commun. 5, 4443 (2014).
[PubMed]

Nat. Methods (3)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[Crossref] [PubMed]

M. Valencia-Burton, R. M. McCullough, C. R. Cantor, and N. E. Broude, “RNA visualization in live bacterial cells using fluorescent protein complementation,” Nat. Methods 4(5), 421–427 (2007).
[PubMed]

T. Ozawa, Y. Natori, M. Sato, and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells,” Nat. Methods 4(5), 413–419 (2007).
[PubMed]

Neuron (1)

M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron 31(6), 973–985 (2001).
[Crossref] [PubMed]

PLoS One (1)

A. Nickerson, T. Huang, L. J. Lin, and X. Nan, “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells,” PLoS One 9(6), e100589 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

X. Zhang, M. Zhang, D. Li, W. He, J. Peng, E. Betzig, and P. Xu, “Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A. 113(37), 10364–10369 (2016).
[Crossref] [PubMed]

Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) (1)

Q. H. Yang and L. Li, “Yeast two-hybrid system and its application on proteomics,” Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3), 221–225 (1999).
[PubMed]

Other (4)

M. B. Einarson, E. N. Pugacheva, and J. R. Orlinick, “GST Pull-down,” CSH protocols 2007, pdb prot4757 (2007).
[Crossref]

C. D. Hu, A. V. Grinberg, and T. K. Kerppola, Visualization of Protein Interactions In Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis (Wiley,2005),Chap.19.

P. A. Vidi, J. A. Przybyla, C. D. Hu, and V. J. Watts, Visualization of G Protein-Coupled Receptor (GPCR) Interactions in Living Cells using Bimolecular Fluorescence Complementation (BiFC) (Wiley,2010),Chapter 5.

P. J. Verveer, O. Rocks, A. G. Harpur, and P. I. Bastiaens, “Measuring FRET by sensitized emission,” CSH protocols 2006(2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sequence alignment of rsEGFP2 with EGFP and constructs design for BiFC assay. (a) Amino acids sequence alignment of rsEGFP2 (black) with EGFP(green), amino acids different from EGFP sequence are highlighted with dark red color. The 158Q splitting site of rsEGFP2 or EGFP for BiFC assay is indicated by red arrows. (b) β-Fos/β-Jun heterodimer model was used in establishing rsEGFP2-based BiFC assay. β-Jun was fused to the rsEGFP2-N with RSIAT linker while β-Fos or β-Fos(Δ Zip) was fused to the rsEGFP2-C with RPACKIPNDLKQKVMNH linker.
Fig. 2
Fig. 2 Split rsEGFP2 for BiFC analysis in live HeLa cells. HeLa cells individually expressing rsEGFP2-N fragment (a), rsEGFP2-C fragment (b), or co-expressing β-Jun-rsEGFP2-N and β-Fos-rsEGFP2-C (c) or co-expressing β-Jun-rsEGFP2-N and β-Fos(Δzip)-rsEGFP2-C (d) were imaged under a fluorescence microscope with a 100 × objective lens. The same intensity scale was applied to (c) and (d). Scale bar: 20μm. The relative brightness of cells expressing indicated plasmids were measured with fluorescence spectrophotometer in (e), *p<0.01 compared with cells expressing co-expressing β-Jun-rsEGFP2-N and β-Fos(Δzip)-rsEGFP2-C and the data were from three independent measurements. (f) Comparable expression level of the fusion proteins in (c) and (d) determined by western blotting with anti-Flag and anti-HA antibodies. (g) 5 consecutive off-switching curves of reconstituted rsEGFP2 (blue) in live HeLa cells co-expressing β-Jun-rsEGFP2-N and β-Fos-rsEGFP2-C by alternating irradiation with 405 nm light (25 W/cm2, 100 ms) and 488 nm (60 W/cm2, 5000 ms). Fluorescence was recorded only during irradiation of 488 nm light. (h) Single off-switching curve of reconstituted rsEGFP2 mediated by β-Jun/β-Fos interaction (blue) and full length rsEGFP2 (red) in live HeLa cells by alternating irradiation with 405 nm light (25 W/cm2, 100 ms) and 488 nm (60 W/cm2, 5000 ms). Fluorescence was recorded only during irradiation of 488 nm light. Each curve is an average of 10 switching cycles. (i) The photobleaching curves of reconstituted β-Fos-β-Jun-rsEGFP2 and full length rsEGFP2 were measured in live HeLa cells by alternating irradiation with 405nm light for on-switching (0.1 kW/cm2, 2ms) and 488nm light for off-switching (1 kW/cm2, 24ms) for each cycle.
Fig. 3
Fig. 3 Characterization of rsEGFP2-based BiFC assay by rapamycin-inducible FRB/FKBP interaction system. Two dish of HeLa cells co-transfected parallelly with the same amount of pBiFC-FKBP-rsEGFP2-N, pBiFC-FRB-rsEGFP2 and pcDNA3.1( + )-mCherry plasmids (internal control) were incubated at 37°C for 24 hours, and then the cells were imaged with the same imaging conditions (a, b, e, f).(a, e) DIC channel, (b, f) GFP channel, the intensity scale was set to the same from 150 to 500 for (b) and (f). After taking images of (a, b, e, f), 100 nM rapamycin was added to only one dish (a, b) and then the two dish of HeLa cells were maintained at 37°C for the next 20 hours and imaged with the same imaging conditions (c, d, g, h). (c, g) DIC channel, (d, h) GFP channel, the intensity scale was set to the same from 150 to 5000 for (d) and (h). Scale bar: 300μm. (i) After 20 hours rapamycin induction, the ensemble green and red fluorescence were measured by fluorescence spectrophotometer and the normalized green-to-red ratios were calculated. *p<0.01 compared with cells without rapamycin induction. The data were from three independent measurements. (j) Comparable expression level of the fusion proteins in (d) and (h) determined by western blotting with anti-Flag and anti-HA antibodies.
Fig. 4
Fig. 4 Super-resolution imaging of protein-protein interactions by combing BiFC with parallelized RESOLFT in live HeLa cells. HeLa cells co-transfected with Lifeact-rsEGFP2-N and Lifeact-rsEGFP2-C or Bak-rsEGFP2-N and Bcl-xL-rsEGFP2-C were imaged with a parallelized RESOLFT microscope. (a) Conventional wide-field fluorescence image and (b) RESOLFT image of cells expressing reconstituted rsEGFP2 signal mediated by Lifeact-rsEGFP2-N and Lifeact-rsEGFP2-C homodimerization. (c) The magnified image of boxed area of (a) and (d) the magnified image of boxed area of (b) are presented and intensity profiles measured of arrowed regions in (c) and (d) are presented in (e) with black and red curves, respectively. (f) Conventional wide-field image and (g) RESOLFT image of cells expressing reconstituted rsEGFP2 signal mediated by Bcl-xL and Bak heterodimerization. (h) The magnified image of boxed area of (f) and (i) the magnified image of boxed area of (g) are presented and intensity profiles measured of arrowed regions in (h) and (i) are presented in (j) with black and red curves, respectively. (k) Conventional wide-field image of a HeLa cell expressing reconstituted rsEGFP2 signal mediated by Bcl-xL and Bak heterodimerization. (l-p) Continuous time-lapse imaging of the HeLa cell in (k) with parallelized RESOLFT. A 405 nm continuous wave diode laser was used for on-switching (2 ms; 12 mW measured at the back focal plane of the objective, corresponding to 0.1 kW/cm2); a 488 nm continuous wave laser was used for off-switching (20 ms; 50 mW measured at the back focal plane of the objective, corresponding to 1 kW/cm2) and fluorescence readout (4 ms; 50 mW measured at the back focal plane of the objective). RESOLFT images were taken using a 24 nm scanning step (pixel) size and (360/24)2 steps were required for one RESOLFT frame in (b) and 36 nm scanning step (pixel) size and (360/36)2 steps were required for one RESOLFT frame in (g) and (l-p). Each RESOLFT frame was taken within ∼6s in (b) and ∼3s in (g) and (l-p). Scale bar: 5μm in (a) and (b),10μm in (f) and (g) and 1μm in (c),(d),(h),(i) and 5μm in (k-p). The images are displayed using linear intensity scale without adjusting γ factor. All the RESOLFT images are raw images without deconvolution.
Fig. 5
Fig. 5 Detection of Bcl-xL and Bak heterodimerization by FRET microscopy in live cells. Detection of Bcl-xL and Bak interactions in live HeLa cells (a) cells expressing CFP-YFP or co-expressing CFP and YFP or co-expressing CFP-Bak and YFP-Bcl-xL or co-expressing CFP-Bak (delete) and YFP-Bcl-xL were imaged by three-filter FRET microscopy. Corrected FRET (FC) images were calculated as described in “materials and methods” and presented as pseudo-color images. All colors are arbitrarily assigned to indicate signal strength. HeLa cells expressing CFP–YFP served as a positive control, while cells co-expressing CFP and YFP as a negative control. Scale bar: 10μm. (b) FR values calculated from individual experimental groups. *p<0.01 compared with cells co-expressing CFP and YFP, **p<0.01 compared with cells co-expressing CFP-Bak (delete) and YFP-Bcl-xL.

Metrics