Abstract

Retinal laser photocoagulation is used to treat several ophthalmic diseases. However, it is associated with damage to surrounding healthy tissue. Local tissue alteration during coagulation laser illumination was measured using phase-resolved optical coherence tomography (OCT) M-mode scan as a change in the local optical path length (LOPL). A metric that represents global net tissue alteration was defined using the LOPL change. The visibility of a laser lesion was assessed by three-dimensional OCT volume measurement. Multiple logistic regression analysis was performed to investigate the association between the introduced metric and the laser lesion visibility. The metric was found to be a statistically significant predictor of the laser lesion visibility independent to laser condition. The proposed method based on an LOPL change is thus promising for retinal photocoagulation monitoring.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT

Heike H. Müller, Lars Ptaszynski, Kerstin Schlott, Christina Debbeler, Marco Bever, Stefan Koinzer, Reginald Birngruber, Ralf Brinkmann, and Gereon Hüttmann
Biomed. Opt. Express 3(5) 1025-1046 (2012)

Selective retina therapy enhanced with optical coherence tomography for dosimetry control and monitoring: a proof of concept study

Daniel Kaufmann, Christian Burri, Patrik Arnold, Volker M. Koch, Christoph Meier, Boris Považay, and Jörn Justiz
Biomed. Opt. Express 9(7) 3320-3334 (2018)

Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography

William C. Y. Lo, Néstor Uribe-Patarroyo, Katharina Hoebel, Kathy Beaudette, Martin Villiger, Norman S. Nishioka, Benjamin J. Vakoc, and Brett E. Bouma
Biomed. Opt. Express 10(4) 2067-2089 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Macular Photocoagulation Study Group, “Argon laser photocoagulation for neovascular maculopathy: Five-year results from randomized clinical trials,” Arch. Ophthalmol. 109(8), 1109–1114 (1991).
    [Crossref] [PubMed]
  2. D. M. Robertson and D. Ilstrup, “Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy,” Am. J. Ophthalmol. 95(4), 457–466 (1983).
    [Crossref] [PubMed]
  3. Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98(5, Supplement), 766–785 (1991).
    [Crossref]
  4. W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
    [Crossref]
  5. K. P. Pflibsen, F. C. Delori, O. Pomerantzeff, and M. M. Pankratov, “Fundus reflectometry for photocoagulation dosimetry,” Appl. Opt. 28(6), 1084–1096 (1989).
    [Crossref] [PubMed]
  6. M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
    [Crossref] [PubMed]
  7. K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
    [Crossref]
  8. H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
    [Crossref] [PubMed]
  9. K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6(1), 170–190 (2015).
    [Crossref] [PubMed]
  10. K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “In-plane and out-of-plane tissue micro-displacement measurement by correlation coefficients of optical coherence tomography,” Opt. Lett. 40(9), 2153–2156 (2015).
    [Crossref] [PubMed]
  11. K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLOS ONE 11(6), e0156761 (2016).
    [Crossref] [PubMed]
  12. A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
    [Crossref] [PubMed]
  13. C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
    [Crossref] [PubMed]
  14. S. Makita and Y. Yasuno, “In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents,” Biomed. Opt. Express 6(5), 1707–1725 (2015).
    [Crossref]
  15. R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
    [Crossref] [PubMed]
  16. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3(8), 1865–1879 (2012).
    [Crossref] [PubMed]
  17. R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
    [Crossref] [PubMed]
  18. C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
    [Crossref] [PubMed]
  19. D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
    [Crossref]
  20. D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
    [Crossref] [PubMed]
  21. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
    [Crossref]
  22. A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
    [Crossref]
  23. F. Kreith, ed., The CRC Handbook of Thermal Engineering (Springer, 2000).
  24. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
    [Crossref] [PubMed]
  25. J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
    [Crossref] [PubMed]
  26. J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9(2), 97–115 (1970).
    [PubMed]
  27. S. L. Jacques, “Optical Absorption of Melanin,” (1998). { http://omlc.org/spectra/melanin/index.html }.
  28. S. Prahl, “Optical Absorption of Hemoglobin,” (1999). { http://omlc.org/spectra/hemoglobin/index.html }.
  29. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref] [PubMed]

2016 (2)

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLOS ONE 11(6), e0156761 (2016).
[Crossref] [PubMed]

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

2012 (3)

2009 (1)

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

2008 (2)

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

2006 (1)

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

1993 (1)

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

1991 (2)

Macular Photocoagulation Study Group, “Argon laser photocoagulation for neovascular maculopathy: Five-year results from randomized clinical trials,” Arch. Ophthalmol. 109(8), 1109–1114 (1991).
[Crossref] [PubMed]

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98(5, Supplement), 766–785 (1991).
[Crossref]

1989 (1)

1985 (2)

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
[Crossref] [PubMed]

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[Crossref]

1984 (1)

W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
[Crossref]

1983 (2)

D. M. Robertson and D. Ilstrup, “Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy,” Am. J. Ophthalmol. 95(4), 457–466 (1983).
[Crossref] [PubMed]

R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
[Crossref] [PubMed]

1970 (1)

J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9(2), 97–115 (1970).
[PubMed]

1954 (1)

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Andersen, D. E.

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Baade, A.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

Barer, R.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Barrett, S. F.

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Bever, M.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

Birngruber, R.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
[Crossref] [PubMed]

W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
[Crossref]

R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
[Crossref] [PubMed]

Blumenkranz, M. S.

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Brinkmann, R.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

Brown, J.

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

Charles, S. J.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Chundru, R.

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Dalal, R.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

de Boer, J. F.

Debbeler, C.

Delgado, C.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Delori, F. C.

Gabel, V. P.

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
[Crossref] [PubMed]

R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
[Crossref] [PubMed]

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Grigull, U.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[Crossref]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Hillenkamp, F.

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
[Crossref] [PubMed]

R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
[Crossref] [PubMed]

Hong, Y.-J.

Huie, P.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Hüttmann, G.

Ilstrup, D.

D. M. Robertson and D. Ilstrup, “Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy,” Am. J. Ophthalmol. 95(4), 457–466 (1983).
[Crossref] [PubMed]

Jain, A.

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Jerath, M. R.

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Kennedy, B. F.

Kennedy, K. M.

Kim, J.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

Koh, S. H.

Koinzer, S.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

Kurokawa, K.

Lavinsky, D.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

Lee, D. Y.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

Lee, S. J.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

Lemij, H. G.

Lorenz, B.

W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
[Crossref]

Makita, S.

Mandel, Y.

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

Marcellino, G.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Marshall, J.

J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9(2), 97–115 (1970).
[PubMed]

McLauchlan, R.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

McLaughlin, R. A.

Milner, T. E.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

Mo, J.

Müller, H. H.

Munro, P. R. T.

Nomoto, H.

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

Oh, J.

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

Palanker, D.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Pankratov, M. M.

Paulus, Y.

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Pflibsen, K. P.

Pomerantzeff, O.

Ptaszynski, L.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

Robertson, D. M.

D. M. Robertson and D. Ilstrup, “Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy,” Am. J. Ophthalmol. 95(4), 457–466 (1983).
[Crossref] [PubMed]

Roider, J.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

Rylander, H.

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Sampson, D. D.

Sanghvi, C.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Schlott, K.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3(5), 1025–1046 (2012).
[Crossref] [PubMed]

Sengers, J. M. H. L.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Sramek, C.

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

Stanga, P. E.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Straub, J.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[Crossref]

Thormählen, I.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[Crossref]

Tkaczyk, S.

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Vermeer, K. A.

Wang, J.

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

Weda, J. J. A.

Weinberg, W.

W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
[Crossref]

Welch, A.

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Wiltberger, M. W.

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Yasuno, Y.

Young, L.

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

D. M. Robertson and D. Ilstrup, “Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy,” Am. J. Ophthalmol. 95(4), 457–466 (1983).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (3)

A. Jain, M. S. Blumenkranz, Y. Paulus, M. W. Wiltberger, D. E. Andersen, P. Huie, and D. Palanker, “Effect of pulse duration on size and character of the lesion in retinal photocoagulation,” Arch. Ophthalmol. 126(1), 78–85 (2008).
[Crossref] [PubMed]

Macular Photocoagulation Study Group, “Argon laser photocoagulation for neovascular maculopathy: Five-year results from randomized clinical trials,” Arch. Ophthalmol. 109(8), 1109–1114 (1991).
[Crossref] [PubMed]

M. R. Jerath, R. Chundru, S. F. Barrett, H. Rylander, and A. Welch, “Reflectance feedback control of photocoagulation in vivo,” Arch. Ophthalmol. 111(4), 531–534 (1993).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (1)

C. Sanghvi, R. McLauchlan, C. Delgado, L. Young, S. J. Charles, G. Marcellino, and P. E. Stanga, “Initial experience with the Pascal photocoagulator: a pilot study of 75 procedures,” Br. J. Ophthalmol. 92(8), 1061–1064 (2008).
[Crossref] [PubMed]

Health Phys. (2)

R. Birngruber, V. P. Gabel, and F. Hillenkamp, “Experimental studies of laser thermal retinal injury,” Health Phys. 44(5), 519–531 (1983).
[Crossref] [PubMed]

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48(6), 781–796 (1985).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. Weinberg, R. Birngruber, and B. Lorenz, “The change in light reflection of the retina during therapeutic laser photocoagulation,” IEEE J. Quantum Electron. 20(12), 1481–1489 (1984).
[Crossref]

Invest. Ophthalmol. (1)

J. Marshall, “Thermal and Mechanical Mechanisms in Laser Damage to the Retina,” Invest. Ophthalmol. 9(2), 97–115 (1970).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

D. Lavinsky, J. Wang, P. Huie, R. Dalal, S. J. Lee, D. Y. Lee, and D. Palanker, “Nondamaging retinal laser therapy:: rationale and applications to the macula,” Invest. Ophthalmol. Vis. Sci. 57(6), 2488–2500 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11(4), 041122 (2006).
[Crossref] [PubMed]

C. Sramek, Y. Paulus, H. Nomoto, P. Huie, J. Brown, and D. Palanker, “Dynamics of retinal photocoagulation and rupture,” J. Biomed. Opt. 14(3), 034007 (2009).
[Crossref] [PubMed]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17(6), 0612231 (2012).
[Crossref]

J. Phys. Chem. Ref. Data (2)

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength, temperature, and density,” J. Phys. Chem. Ref. Data 14(4), 933–945 (1985).
[Crossref]

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Nature (1)

R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173(4409), 821–822 (1954).
[Crossref] [PubMed]

Ophthalmology (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98(5, Supplement), 766–785 (1991).
[Crossref]

Opt. Lett. (1)

PLOS ONE (1)

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLOS ONE 11(6), e0156761 (2016).
[Crossref] [PubMed]

Retina (1)

D. Lavinsky, C. Sramek, J. Wang, P. Huie, R. Dalal, Y. Mandel, and D. Palanker, “SUBVISIBLE RETINAL LASER THERAPY: Titration Algorithm and Tissue Response,” Retina 34(1), 87–97 (2014).
[Crossref]

Other (3)

S. L. Jacques, “Optical Absorption of Melanin,” (1998). { http://omlc.org/spectra/melanin/index.html }.

S. Prahl, “Optical Absorption of Hemoglobin,” (1999). { http://omlc.org/spectra/hemoglobin/index.html }.

F. Kreith, ed., The CRC Handbook of Thermal Engineering (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Timing chart of laser illumination and M-mode OCT measurement. The start time of coagulation laser illumination ts is 1 ms after the start of M-mode OCT scan.
Fig. 2
Fig. 2 OCT M-mode scan images of Eye07 with coagulation laser duration of 200 ms and power of (a) 400 mW, (b) 300 mW, (c) 200 mW, and (d) 100 mW. Yellow ticks in OCT cross sections denote the location of the M-mode scan. The orange and blue boxes are the location of M-mode LOPL change rate shown in Fig. 3. White arrows indicate the stop time of the coagulation laser.
Fig. 3
Fig. 3 M-mode LOPL change rate corresponding to Fig. 2. Yellow ticks in OCT cross sections denote the location of the M-mode scan.
Fig. 4
Fig. 4 Obtained metric M(t) for seven porcine eyes and 20 laser configurations. Solid lines indicate cases in which there is a visible laser lesion, and dashed lines indicate cases in which there is no visible laser lesion.
Fig. 5
Fig. 5 Visualization of laser lesions with OCT volumetric imaging (Eye01): (a–d) duration of 200 ms and power of 400 mW; (e–h) duration of 100 ms and power of 200 mW; (i–l) duration of 50 ms and power of 50 mW; (a). (e), (i): en face OCT slices at the ONL before laser illumination; (b), (f), (j): en face OCT slices at the ONL after laser illumination; (c), (g), (h): cross-sectional OCT images before laser illumination; (d), (h), (l): cross-sectional OCT images after laser illumination.
Fig. 6
Fig. 6 En face projections of three-dimensional volumes presented in Fig. 5: (a–c) en face projections before laser coagulation; (d–f) en face projections after laser coagulation. The coagulation laser was illuminated at (d) 400 mW for 200 ms, (e) 200 mW for 100 ms, and (f) 50 mW for 50 ms. Scale bars indicate 500 μm.
Fig. 7
Fig. 7 Laser photocoagulation at a large retinal vessel with a power of 400 mW and a duration of 200 ms. Cross-sectional OCT image (a) before and (b) after coagulation laser illumination. (c) LOPL change rate during laser illumination at the location indicated by orange lines in (a) and (b). Scale bars indicate 500 μm.

Tables (1)

Tables Icon

Table 1 Results of multiple logistic regression analysis. *P < 0.05, **P < 0.01, ***P < 0.001.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r ( t , l ) 2 w ( t , l ) l t ,
r ( t i , l j ) = λ c 4 π Δ l Δ t ϕ ( t i , l j ) d δ l m δ t ,
r ( t , l ) z ( t , l ) t + 1 n ( t , l ) n ( t , l ) t ,
R ( t i ) = j [ | r ( t i , l j ) | | r ( t i , l j ) | t i < t s ¯ ] δ l .
M ( t i ) = k = s i R ( t k ) δ t .
logit [ Pr ( y = 1 ) ] = β 0 + β M M + β P P + β τ τ + β E P τ ,

Metrics