Abstract

A modified computational model of the human eye was used to obtain and compare different probability density functions, radial profiles of light pattern distributions, and images of the point spread function formed in the human retina under the presence of different kinds of particles inside crystalline lenses suffering from cataracts. Specifically, this work uses simple particles without shells and multilamellar bodies (MLBs) with shells. The emergence of such particles alters the formation of images on the retina. Moreover, the MLBs change over time, which affects properties such as the refractive index of their shell. Hence, this work not only simulates the presence of such particles but also evaluates the incidence of particle parameters such as particle diameter, particle thickness, and shell refractive index, which are set based on reported experimental values. In addition, two wavelengths (400 nm and 700 nm) are used for light passing through the different layers of the computational model. The effects of these parameters on light scattering are analyzed using the simulation results. Further, in these results, the effects of light scattering on image formation can be seen when single particles, early-stage MLBs, or mature MLBs are incorporated in the model. Finally, it is found that particle diameter has the greatest impact on image formation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational model of the effect of light scattering from cataracts in the human eye

Ismael Kelly-Pérez, Neil C. Bruce, Luis R. Berriel-Valdos, Annette Werner, and José A. Delgado Atencio
J. Opt. Soc. Am. A 30(12) 2585-2594 (2013)

Incoherent image formation in the presence of scattering eye media

Wolfgang Wesemann
J. Opt. Soc. Am. A 4(8) 1439-1447 (1987)

Surface scattering of core–shell particles with anisotropic shell

Pieter A. A. De Beule
J. Opt. Soc. Am. A 31(1) 162-171 (2014)

References

  • View by:
  • |
  • |
  • |

  1. WHO, “Blindness: Vision 2020 — The Global Initiative for the Elimination of Avoidable Blindness,” (WHO, 2016), http://www.who.int/mediacentre/factsheets/fs213/en/ .
  2. J. Stürmer, “Cataracts — trend and new developments,” Therapeutische Umschau. Revue therapeutique 66, 167–171 (2009)
    [Crossref]
  3. P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
    [Crossref] [PubMed]
  4. P. Murphy and M. D. O’Connor, “Stem cells and the ocular lens: Implications for cataract research and therapy,” in Regenerative Biology of the Eye, A. Pébay, ed. (Springer, 2014).
    [Crossref]
  5. S. K. Miller, Adult Nurse Practitioner Certification Review Guide (Jones & Bartlett Learning, 2012), Chapter 4.
  6. V. Nourrit and J. M. Kelly, “Intraocular scatter and visual performances,” Optom. Pract. 10, 117–128 (2009).
  7. U. R. Acharya, Y. K. E. Ng, and J. S. Suri, Image Modeling of the Human Eye (Artech House, 2008), section 1.4.8.
  8. C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
    [Crossref]
  9. M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
    [Crossref] [PubMed]
  10. V. B. Voleti and J. P. Hubschman, “Age-related eye disease,” Maturitas 75, 29–33 (2013).
    [Crossref] [PubMed]
  11. R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
    [Crossref]
  12. H. S. Thomas and J.T.P. van den Berg, “Light scattering model for donor lenses as a function of deptht,” Mol. Vis. 39, 1437–1445 (1999).
  13. A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
    [PubMed]
  14. M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
    [Crossref] [PubMed]
  15. M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
    [Crossref] [PubMed]
  16. K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
    [PubMed]
  17. M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
    [Crossref] [PubMed]
  18. M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
    [Crossref] [PubMed]
  19. I. Kelly-Pérez, N. C. Bruce, L. R. Berriel-Valdos, A. Werner, and J. A. Atencio, “Computational model of the effect of light scattering from cataracts in the human eye,” J. Opt. Soc. Am. A 30, 2585–2594 (2013).
    [Crossref]
  20. E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
    [Crossref] [PubMed]
  21. L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
    [Crossref] [PubMed]
  22. W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).
  23. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems (John Wiley & Sons, 2006), Chapter 6.
    [Crossref]
  24. G. D. Eppen and F. J. Gould, Introductory Management Science: Decision Modeling with Spreadsheets (Prentice Hall, 1998), Appendix A: Basic Concepts in probability.
  25. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
    [Crossref]
  26. H. C. Hulst and H. C. V. D. Hulst, Light Scattering by Small Particles (Courier Corporation, 1957), Chapters 4 and 9.
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008), Chapters 3 and 4.
  28. O. Boucher, Atmospheric Aerosols Properties and Climate Impacts (SpringerNetherlands, 2015), Appendix C: Mie theory.
  29. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [Crossref] [PubMed]
  30. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003).
    [Crossref] [PubMed]
  31. A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
    [Crossref]
  32. P. Artal, S. Marcos, D. R Willians, and R. Navarro, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [Crossref]
  33. P. Artal, D. G. Green, I. Iglesias, and N. López-Gil, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [Crossref]

2015 (2)

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

2013 (5)

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

I. Kelly-Pérez, N. C. Bruce, L. R. Berriel-Valdos, A. Werner, and J. A. Atencio, “Computational model of the effect of light scattering from cataracts in the human eye,” J. Opt. Soc. Am. A 30, 2585–2594 (2013).
[Crossref]

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

V. B. Voleti and J. P. Hubschman, “Age-related eye disease,” Maturitas 75, 29–33 (2013).
[Crossref] [PubMed]

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

2012 (1)

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

2010 (1)

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

2009 (3)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]

J. Stürmer, “Cataracts — trend and new developments,” Therapeutische Umschau. Revue therapeutique 66, 167–171 (2009)
[Crossref]

V. Nourrit and J. M. Kelly, “Intraocular scatter and visual performances,” Optom. Pract. 10, 117–128 (2009).

2008 (1)

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

2007 (2)

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

2006 (1)

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

2005 (1)

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

2003 (2)

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003).
[Crossref] [PubMed]

A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
[Crossref]

1999 (1)

H. S. Thomas and J.T.P. van den Berg, “Light scattering model for donor lenses as a function of deptht,” Mol. Vis. 39, 1437–1445 (1999).

1995 (2)

1980 (1)

Acharya, U. R.

U. R. Acharya, Y. K. E. Ng, and J. S. Suri, Image Modeling of the Human Eye (Artech House, 2008), section 1.4.8.

Ahmad, M.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Arrieta-Quintero, E.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Artal, P.

Asbell, P. A.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Atencio, J. A.

Augusteyn, R.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Bahrami, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Balasubramanian, D.

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Barberger-Gateau, P.

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

Basu, S.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Berriel-Valdos, L. R.

Bohren, C. F.

C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems (John Wiley & Sons, 2006), Chapter 6.
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008), Chapters 3 and 4.

Boucher, O.

O. Boucher, Atmospheric Aerosols Properties and Climate Impacts (SpringerNetherlands, 2015), Appendix C: Mie theory.

Bourne, R. R. A.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Brennan, L. A.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Brocks, D.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Bruce, N. C.

Burette, A.

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

Carriere, I.

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

Chakravarthy, U.

A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
[Crossref]

Chauss, D.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Chopdar, A.

A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
[Crossref]

Clothiaux, E. E.

C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems (John Wiley & Sons, 2006), Chapter 6.
[Crossref]

Costello, M. J.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

Delage, M.

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

Delcourt, C.

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

Dualan, I.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Dubbelman, M.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

Eppen, G. D.

G. D. Eppen and F. J. Gould, Introductory Management Science: Decision Modeling with Spreadsheets (Prentice Hall, 1998), Appendix A: Basic Concepts in probability.

Epstein, S.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Flaxman, S. R.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Fowler, W. C.

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

Frame, L.

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

Freel, C. D.

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

Gilliland, K. O.

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

Gould, F. J.

G. D. Eppen and F. J. Gould, Introductory Management Science: Decision Modeling with Spreadsheets (Prentice Hall, 1998), Appendix A: Basic Concepts in probability.

Green, D. G.

Heethaar, R.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

Hermans, E.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

Ho, A.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Hoshino, M.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Hubschman, J. P.

V. B. Voleti and J. P. Hubschman, “Age-related eye disease,” Maturitas 75, 29–33 (2013).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008), Chapters 3 and 4.

Hulst, H. C.

H. C. Hulst and H. C. V. D. Hulst, Light Scattering by Small Particles (Courier Corporation, 1957), Chapters 4 and 9.

Hulst, H. C. V. D.

H. C. Hulst and H. C. V. D. Hulst, Light Scattering by Small Particles (Courier Corporation, 1957), Chapters 4 and 9.

Iglesias, I.

Johnsen, S.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

Jonas, J. B.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Kantorow, M.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Keeffe, J.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Kelly, J. M.

V. Nourrit and J. M. Kelly, “Intraocular scatter and visual performances,” Optom. Pract. 10, 117–128 (2009).

Kelly-Pérez, I.

Krishna, P. V.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Leasher, J.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

López-Gil, N.

Maceo Heilman, B.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Manns, F.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Marcos, S.

Marussich, L.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Menko, A. S.

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Metlapally, S.

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Miller, S. K.

S. K. Miller, Adult Nurse Practitioner Certification Review Guide (Jones & Bartlett Learning, 2012), Chapter 4.

Mindel, J.

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Mohamed, A.

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

Murphy, P.

P. Murphy and M. D. O’Connor, “Stem cells and the ocular lens: Implications for cataract research and therapy,” in Regenerative Biology of the Eye, A. Pébay, ed. (Springer, 2014).
[Crossref]

Naidoo, K.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Nankivil, D.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Navarro, R.

Ng, Y. K. E.

U. R. Acharya, Y. K. E. Ng, and J. S. Suri, Image Modeling of the Human Eye (Artech House, 2008), section 1.4.8.

Nourrit, V.

V. Nourrit and J. M. Kelly, “Intraocular scatter and visual performances,” Optom. Pract. 10, 117–128 (2009).

O’Connor, M. D.

P. Murphy and M. D. O’Connor, “Stem cells and the ocular lens: Implications for cataract research and therapy,” in Regenerative Biology of the Eye, A. Pébay, ed. (Springer, 2014).
[Crossref]

Pal, U.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]

Parel, J.-M.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Peña, O.

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]

Pesudovs, K.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Pierscionek, B.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Price, H.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Ramamurthy, B.

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Regini, J.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Resnikoff, S.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Schalch, W.

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

Smith, J. L.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Stevens, G. A.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Stürmer, J.

J. Stürmer, “Cataracts — trend and new developments,” Therapeutische Umschau. Revue therapeutique 66, 167–171 (2009)
[Crossref]

Suri, J. S.

U. R. Acharya, Y. K. E. Ng, and J. S. Suri, Image Modeling of the Human Eye (Artech House, 2008), section 1.4.8.

Taylor, H. R.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Thomas, H. S.

H. S. Thomas and J.T.P. van den Berg, “Light scattering model for donor lenses as a function of deptht,” Mol. Vis. 39, 1437–1445 (1999).

Uesugi, K.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

van den Berg, J.T.P.

H. S. Thomas and J.T.P. van den Berg, “Light scattering model for donor lenses as a function of deptht,” Mol. Vis. 39, 1437–1445 (1999).

van der Heijde, R.

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

Verma, D.

A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
[Crossref]

Voleti, V. B.

V. B. Voleti and J. P. Hubschman, “Age-related eye disease,” Maturitas 75, 29–33 (2013).
[Crossref] [PubMed]

Weber, M.

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).

Werner, A.

White, R. A.

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Willians, D. R

Wiscombe, W. J.

Yagi, N.

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

Yang, W.

Yao, Y.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

B. M. J. (1)

A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” B. M. J. 326, 485 (2003).
[Crossref]

Comput. Phys. Commun. (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354 (2009).
[Crossref]

Exp. Eye. Res. (4)

M. Bahrami, M. Hoshino, B. Pierscionek, N. Yagi, J. Regini, and K. Uesugi, “Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation,” Exp. Eye. Res. 140, 19–27 (2015).
[Crossref] [PubMed]

M. J. Costello, S. Johnsen, S. Metlapally, K. O. Gilliland, L. Frame, and D. Balasubramanian, “Multilamellar spherical particles as potential sources of excessive light scattering in human age-related nuclear cataracts,” Exp. Eye. Res. 91, 881–889 (2010).
[Crossref] [PubMed]

M. J. Costello, A. Burette, M. Weber, S. Metlapally, K. O. Gilliland, W. C. Fowler, A. Mohamed, and S. Johnsen, “Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts,” Exp. Eye. Res. 101, 72–81 (2012).
[Crossref] [PubMed]

M. J. Costello, L. A. Brennan, S. Basu, D. Chauss, A. Mohamed, K. O. Gilliland, S. Johnsen, A. S. Menko, and M. Kantorow, “Autophagy and mitophagy participate in ocular lens organelle degradation,” Exp. Eye. Res. 116, 141–150 (2013).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[Crossref] [PubMed]

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J.-M. Parel, “Measurement of crystalline lens volume during accommodation in a lens stretcherlens volume and accommodation,” Invest. Ophthalmol. Vis. Sci. 56, 4239 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

C. Delcourt, I. Carriere, M. Delage, P. Barberger-Gateau, and W. Schalch, “Plasma lutein, and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: The POLA Study,” Invest. Ophthalmol. Visual Sci. 47, 2329–2335 (2006).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Vis. (1)

E. Hermans, M. Dubbelman, R. van der Heijde, and R. Heethaar, “The shape of the human lens nucleus with accommodation,” J. Vis. 7(10, 16 (2007).
[Crossref] [PubMed]

Lancet (1)

P. A. Asbell, I. Dualan, J. Mindel, D. Brocks, M. Ahmad, and S. Epstein, “Age-related cataract,” Lancet 365, 599–609 (2005).
[Crossref] [PubMed]

Lancet. Glob. Health. (1)

R. R. A. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman, H. Price, J. B. Jonas, J. Keeffe, J. Leasher, K. Naidoo, K. Pesudovs, S. Resnikoff, and H. R. Taylor, “Causes of vision loss worldwide, 1990–2010: A systematic analysis,” Lancet. Glob. Health. 1, 339–349 (2013).
[Crossref]

Maturitas (1)

V. B. Voleti and J. P. Hubschman, “Age-related eye disease,” Maturitas 75, 29–33 (2013).
[Crossref] [PubMed]

Mol. Vis. (3)

H. S. Thomas and J.T.P. van den Berg, “Light scattering model for donor lenses as a function of deptht,” Mol. Vis. 39, 1437–1445 (1999).

A. Mohamed, K. O. Gilliland, S. Metlapally, S. Johnsen, and M. J. Costello, “Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens,” Mol. Vis. 19, 2352–2359 (2013).
[PubMed]

K. O. Gilliland, S. Johnsen, S. Metlapally, M. J. Costello, B. Ramamurthy, P. V. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vis. 14, 572–582 (2008).
[PubMed]

Optom. Pract. (1)

V. Nourrit and J. M. Kelly, “Intraocular scatter and visual performances,” Optom. Pract. 10, 117–128 (2009).

Therapeutische Umschau. Revue therapeutique (1)

J. Stürmer, “Cataracts — trend and new developments,” Therapeutische Umschau. Revue therapeutique 66, 167–171 (2009)
[Crossref]

Other (10)

WHO, “Blindness: Vision 2020 — The Global Initiative for the Elimination of Avoidable Blindness,” (WHO, 2016), http://www.who.int/mediacentre/factsheets/fs213/en/ .

P. Murphy and M. D. O’Connor, “Stem cells and the ocular lens: Implications for cataract research and therapy,” in Regenerative Biology of the Eye, A. Pébay, ed. (Springer, 2014).
[Crossref]

S. K. Miller, Adult Nurse Practitioner Certification Review Guide (Jones & Bartlett Learning, 2012), Chapter 4.

U. R. Acharya, Y. K. E. Ng, and J. S. Suri, Image Modeling of the Human Eye (Artech House, 2008), section 1.4.8.

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).

C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems (John Wiley & Sons, 2006), Chapter 6.
[Crossref]

G. D. Eppen and F. J. Gould, Introductory Management Science: Decision Modeling with Spreadsheets (Prentice Hall, 1998), Appendix A: Basic Concepts in probability.

H. C. Hulst and H. C. V. D. Hulst, Light Scattering by Small Particles (Courier Corporation, 1957), Chapters 4 and 9.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008), Chapters 3 and 4.

O. Boucher, Atmospheric Aerosols Properties and Climate Impacts (SpringerNetherlands, 2015), Appendix C: Mie theory.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure of the eye with its main elements.

Fig. 2
Fig. 2

Diagrams of the particles. (a) Particles with no shell, (b) particles with lipid multilamellar shells (MLBs), and (c) particles representing mature MLBs with an enlarged low density shell without lipids. The refractive indices of the particles are 1.49 and 1.42 for the core (ni) and the surrounding cytoplasm (nc), respectively. For the MLBs, the refractive indices of the shells are 1.50 for the lipid bilayer (nlb) and 1.35 for shells of mature MLBs (nm). Hence, D1 is the diameter of the core and D2 is the diameter of the entire particle.

Fig. 3
Fig. 3

Scattering angle versus PDF using a particle a diameter of 1 μm and with different shell thicknesses.

Fig. 4
Fig. 4

Scattering angle versus PDF using a particle a diameter of 2 μm and with different shell thicknesses.

Fig. 5
Fig. 5

Scattering angle versus PDF using a particle a diameter of 3 μm and with different shell thicknesses.

Fig. 6
Fig. 6

Scattering angle versus PDF using a particle a diameter of 4 μm and with different shell thicknesses.

Fig. 7
Fig. 7

Radial intensity profiles in the retinal plane with MLB shell thicknesses of 0, 50, and 200 nm and diameter D2 = 1 μm.

Fig. 8
Fig. 8

Radial intensity profiles in the retinal plane with MLB shell thicknesses of 0, 50, and 200 nm and diameter D2 = 2 μm.

Fig. 9
Fig. 9

Radial intensity profiles in the retinal plane with MLBs shell thicknesses of 0, 50, and 200 nm and diameter D2 = 3 μm.

Fig. 10
Fig. 10

Radial intensity profiles in the retinal plane with MLBs shell thicknesses of 0, 50, and 200 nm and diameter D2 = 4 μm.

Fig. 11
Fig. 11

Changes of the light intensity distribution on the retina plane as the particle size is varied, using a wavelength of 400 nm, 400,000 particles, and 1,000,000 photons. (a) D2 = 1 μm. (b) D2 = 2 μm. (c) D2 = 3 μm. (d) D2 = 4 μm.

Fig. 12
Fig. 12

Changes of the light intensity distribution on the retina plane as the particle size is varied, using a wavelength of 700 nm, 400,000 particles, and 1,000,000 photons. (a) D2 = 1 μm. (b) D2 = 2 μm. (c) D2 = 3 μm. (d) D2 = 4 μm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( θ ) = 4 x L 2 Q s c a ( S 1 ( θ ) 2 + S 2 ( θ ) 2 ) 2 .
S 1 ( θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n π n ( θ ) + b n τ n ( θ ) ] ,
S 2 ( θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n τ n ( θ ) + b n π n ( θ ) ] .
Q s c a = 2 x L 2 n = 1 ( 2 n + 1 ) [ | a n | 2 + | b n | 2 ] .
1 4 π 0 2 π 0 π P ( θ ) s i n θ d θ d φ = 1 ,
1 2 0 π F ( θ ) s i n θ d θ = 1 ,
F ( θ ) = P ( θ ) 1 2 0 π P ( θ ) s i n θ d θ ,
S = 1 2 i = 1 N θ P i s i n θ i Δ θ i .
P N = P i s i n θ i 2 S .
i = 1 N θ P N = 1 .

Metrics