T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep. Prog. Phys.73 (2010).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 051908 (2004).

[Crossref]
[PubMed]

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, New York, NY, USA, 2016), 1st ed.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2999–R3002 (1993).

[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).

[Crossref]

G. Weiss, R. Nossal, and R. Bonner, “Statistics of Penetration Depth of Photons Re-emitted from Irradiated Tissue,” J. Mod. Opt. 36, 349–359 (1989).

[Crossref]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[Crossref]
[PubMed]

S. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2999–R3002 (1993).

[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).

[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep. Prog. Phys.73 (2010).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).

[Crossref]
[PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).

[Crossref]
[PubMed]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys Med Biol 47, 4131–4144 (2002).

[Crossref]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Di ffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).

[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep. Prog. Phys.73 (2010).

[Crossref]
[PubMed]

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, New York, NY, USA, 2016), 1st ed.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77, 420–430 (2003).

[Crossref]
[PubMed]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).

[Crossref]
[PubMed]

F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 051908 (2004).

[Crossref]
[PubMed]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77, 420–430 (2003).

[Crossref]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Di ffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

G. Weiss and J. Kiefer, “A numerical study of the statistics of penetration depth of photons re-emitted from irradiated media,” J. Mod. Opt. 45, 2327–2337 (1998).

[Crossref]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys Med Biol 47, 4131–4144 (2002).

[Crossref]
[PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).

[Crossref]
[PubMed]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).

[Crossref]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Di ffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).

[Crossref]

G. Weiss, J. Porra, and J. Masoliver, “Statistics of the depth probed by cw measurements of photons in a turbid medium,” Phys. Rev. E. 58, 6431–6439 (1998).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

G. Weiss, R. Nossal, and R. Bonner, “Statistics of Penetration Depth of Photons Re-emitted from Irradiated Tissue,” J. Mod. Opt. 36, 349–359 (1989).

[Crossref]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2999–R3002 (1993).

[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).

[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

G. Weiss, J. Porra, and J. Masoliver, “Statistics of the depth probed by cw measurements of photons in a turbid medium,” Phys. Rev. E. 58, 6431–6439 (1998).

[Crossref]

J. Ripoll, Principles of Diffuse Light Propagation: Light Propagation in Tissues with Applications in Biology and Medicine (World Scientific, 2012).

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77, 420–430 (2003).

[Crossref]
[PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77, 420–430 (2003).

[Crossref]
[PubMed]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 051908 (2004).

[Crossref]
[PubMed]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

G. Weiss and J. Kiefer, “A numerical study of the statistics of penetration depth of photons re-emitted from irradiated media,” J. Mod. Opt. 45, 2327–2337 (1998).

[Crossref]

G. Weiss, J. Porra, and J. Masoliver, “Statistics of the depth probed by cw measurements of photons in a turbid medium,” Phys. Rev. E. 58, 6431–6439 (1998).

[Crossref]

G. Weiss, R. Nossal, and R. Bonner, “Statistics of Penetration Depth of Photons Re-emitted from Irradiated Tissue,” J. Mod. Opt. 36, 349–359 (1989).

[Crossref]

G. H. Weiss, “Statistical properties of the penetration of photons into a semi-infinite turbid medium: a random-walk analysis,” Appl. Opt. 37, 3558–3563 (1998).

[Crossref]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2999–R3002 (1993).

[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).

[Crossref]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep. Prog. Phys.73 (2010).

[Crossref]
[PubMed]

F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 051908 (2004).

[Crossref]
[PubMed]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys Med Biol 47, 4131–4144 (2002).

[Crossref]
[PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).

[Crossref]
[PubMed]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).

[Crossref]
[PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).

[Crossref]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Di ffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).

[Crossref]

G. Zonios, “Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations,” J. Biomed. Opt. 19, 97001 (2014).

[Crossref]
[PubMed]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, and S. Havlin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).

[Crossref]
[PubMed]

G. Zaccanti, “Monte Carlo study of light propagation in optically thick media: point source case,” Appl. Opt. 30, 2031–2041 (1991).

[Crossref]
[PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).

[Crossref]
[PubMed]

G. H. Weiss, “Statistical properties of the penetration of photons into a semi-infinite turbid medium: a random-walk analysis,” Appl. Opt. 37, 3558–3563 (1998).

[Crossref]

B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).

[Crossref]
[PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).

[Crossref]
[PubMed]

M. Testorf, U. Osterberg, B. Pogue, and K. Paulsen, “Sampling of time- and frequency-domain signals in monte carlo simulations of photon migration,” Appl. Opt. 38, 236–245 (1999).

[Crossref]

E. M. Sevick, J. K. Frisoli, C. L. Burch, and J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).

[Crossref]
[PubMed]

F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 36, 4600–4612 (1997).

[Crossref]
[PubMed]

S. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).

[Crossref]
[PubMed]

I. Nissila, J. C. Hebden, D. Jennions, J. Heino, M. Schweiger, K. Kotilahti, T. Noponen, A. Gibson, S. Jarvenpaa, L. Lipiainen, and T. Katila, “Comparison between a time-domain and a frequency-domain system for optical tomography,” J Biomed. Opt. 11, 064015 (2006).

[Crossref]

G. Zonios, “Investigation of reflectance sampling depth in biological tissues for various common illumination/collection configurations,” J. Biomed. Opt. 19, 97001 (2014).

[Crossref]
[PubMed]

F. Martelli, P. D. Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19, 076011 (2014).

[Crossref]

G. Weiss, R. Nossal, and R. Bonner, “Statistics of Penetration Depth of Photons Re-emitted from Irradiated Tissue,” J. Mod. Opt. 36, 349–359 (1989).

[Crossref]

G. Weiss and J. Kiefer, “A numerical study of the statistics of penetration depth of photons re-emitted from irradiated media,” J. Mod. Opt. 45, 2327–2337 (1998).

[Crossref]

J. M. Schmitt, A. Knuttel, and J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).

[Crossref]
[PubMed]

R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media,” Opt. Express 12, 2102–2111 (2004).

[Crossref]
[PubMed]

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77, 420–430 (2003).

[Crossref]
[PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys Med Biol 47, 4131–4144 (2002).

[Crossref]
[PubMed]

F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 051908 (2004).

[Crossref]
[PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2999–R3002 (1993).

[PubMed]

G. Weiss, J. Porra, and J. Masoliver, “Statistics of the depth probed by cw measurements of photons in a turbid medium,” Phys. Rev. E. 58, 6431–6439 (1998).

[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).

[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).

[Crossref]

J. Ripoll, Principles of Diffuse Light Propagation: Light Propagation in Tissues with Applications in Biology and Medicine (World Scientific, 2012).

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, New York, NY, USA, 2016), 1st ed.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse Optics for Tissue Monitoring and Tomography,” Rep. Prog. Phys.73 (2010).

[Crossref]
[PubMed]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation Through Biological Tissue and Other Di ffusive Media: Theory, Solutions, and Software (SPIE Press, 2010).

[Crossref]