Abstract

Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation

Kyungsik Eom, Changkyun Im, Seoyoung Hwang, Seyoung Eom, Tae-Seong Kim, Hae Sun Jeong, Kyung Hwan Kim, Kyung Min Byun, Sang Beom Jun, and Sung June Kim
Biomed. Opt. Express 7(4) 1614-1625 (2016)

Optical stimulation enables paced electrophysiological studies in embryonic hearts

Yves T. Wang, Shi Gu, Pei Ma, Michiko Watanabe, Andrew M. Rollins, and Michael W. Jenkins
Biomed. Opt. Express 5(4) 1000-1013 (2014)

Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device

Li-Chung Cheng, Chi-Hsiang Lien, Yong Da Sie, Yvonne Yuling Hu, Chun-Yu Lin, Fan-Ching Chien, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen
Biomed. Opt. Express 5(8) 2526-2536 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
    [Crossref] [PubMed]
  2. V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
    [Crossref] [PubMed]
  3. D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
    [Crossref] [PubMed]
  4. L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
    [Crossref] [PubMed]
  5. D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
    [Crossref] [PubMed]
  6. J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
    [Crossref] [PubMed]
  7. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
    [Crossref] [PubMed]
  8. A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
    [Crossref] [PubMed]
  9. J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
    [Crossref] [PubMed]
  10. S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
    [Crossref] [PubMed]
  11. P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
    [Crossref] [PubMed]
  12. N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
    [Crossref] [PubMed]
  13. A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
    [Crossref] [PubMed]
  14. F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
    [Crossref] [PubMed]
  15. S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
    [Crossref] [PubMed]
  16. X. Han and E. S. Boyden, “Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution,” PLoS One 2(3), e299 (2007).
    [Crossref] [PubMed]
  17. A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
    [Crossref] [PubMed]
  18. Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).
  19. K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
    [Crossref] [PubMed]
  20. S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).
  21. B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed - Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  22. P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
    [Crossref] [PubMed]
  23. N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
    [Crossref]
  24. J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
    [Crossref] [PubMed]
  25. T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
    [Crossref] [PubMed]
  26. S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
    [Crossref] [PubMed]
  27. N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

2016 (3)

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

2015 (2)

N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
[Crossref]

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

2014 (3)

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

2013 (6)

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

2012 (2)

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

2011 (6)

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

2009 (2)

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

2007 (1)

X. Han and E. S. Boyden, “Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution,” PLoS One 2(3), e299 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed - Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Albea, J.

Alkema, M. J.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Antognazza, M. R.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Armstrong, W. E.

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Augustine, G. J.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Awatramani, G. B.

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Banin, U.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Bareket, L.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Bellani, S.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Ben-Dov, J.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Benfenati, F.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Ben-Yaishc, S.

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

Bezanilla, F.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Bisti, S.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Blumhagen, F.

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Boyden, E. S.

X. Han and E. S. Boyden, “Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution,” PLoS One 2(3), e299 (2007).
[Crossref] [PubMed]

Brosh, I.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Busskamp, V.

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

Butson, C. R.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Byun, K. M.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Carvalho-de-Souza, J. L. L.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Chakrova, N.

N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
[Crossref]

Chang, J. W.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Cheshnovsky, O.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Chiel, H. J.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

Choi, J. M.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Choi, Y.

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

Colombo, E.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Cunha, C.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

da Silveira, R. A.

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Dal Maschio, M.

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Dang, B.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

David-Pur, M.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Deisseroth, K.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Duke, A. R.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

Eleftheriou, C.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed - Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Endeman, D.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Eom, K.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Fajardo, O.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

Fang-Yen, C.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Farah, N.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Faraha, N.

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

Fenno, L.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Feyen, P.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Foehring, R. C.

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Friedrich, R. W.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Gershow, M.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Ghezzi, D.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Golan, L.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Han, X.

X. Han and E. S. Boyden, “Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution,” PLoS One 2(3), e299 (2007).
[Crossref] [PubMed]

Hanein, Y.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

Häusser, M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Heck, D. H.

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Herzog, N.

N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

Hong, S.

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

Ishizuka, T.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Jansen, E. D.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504–506 (2005).
[Crossref] [PubMed]

Jenkins, M. W.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

Jerome, J.

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Jimbo, Y.

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

Jun, S. B.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Kang, T.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Kanzaki, R.

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

Kao, C.

Kee, M. Z. L.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Kent, S. B. H. B. H.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Kim, J.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Kim, R.

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

Kim, S. J.

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Konrad, P.

Lanzani, G.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Lanzarini, E.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Laudato, L.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Leifer, A. M.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Loew, L. M.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Lu, H.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

Lubin, G.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Maccarone, R.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Mariappan, K.

Marom, A.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Martino, N.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Matar, S.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

McManus, J. M.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

Mete, M.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Münch, T. A.

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Nakao, M.

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

Nam, Y.

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed - Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Nova, M.

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Packer, A. M.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Park, J.-H.

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

Pepperberg, D. R. R.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Pertile, G.

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Picaud, S.

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

Rand, D.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Rieger, B.

N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
[Crossref]

Roska, B.

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Roy, S.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Sahel, J. A.

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

Sakai, S.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Samuel, A. D. T.

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Schärer, Y.-P. Z.

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Sernagor, E.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Shein-idelson, M.

N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

Shoham, S.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

Shum, J.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Siegert, S.

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Spain, W. J.

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Stallinga, S.

N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
[Crossref]

Suzurikawa, J.

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

Takahashi, H.

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

Tamar Arens-Arad, Y. M.

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

Treger, J. S. S.

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Tsuda, S.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Ueno, K.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Viney, T. J.

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

Waiskopf, N.

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Wells, J.

Yaksi, E.

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Yan, P.

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Yawo, H.

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

Yizhar, O.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Yoo, S.

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

Zhang Schärer, Y.-P.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

Zhu, P.

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Zlotnikc, A.

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

Zoubi, A.

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

ACS Nano (2)

S. Yoo, S. Hong, Y. Choi, J.-H. Park, and Y. Nam, “Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers,” ACS Nano 8(8), 8040–8049 (2014).
[Crossref] [PubMed]

S. Yoo, R. Kim, J.-H. Park, and Y. Nam, “Electro-Optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface,” ACS Nano 10, 4274 (2016).

Annu. Rev. Neurosci. (1)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed - Mediated Growth Method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Front. Syst. Neurosci. (1)

J. Jerome, R. C. Foehring, W. E. Armstrong, W. J. Spain, and D. H. Heck, “Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing,” Front. Syst. Neurosci. 5, 70 (2011).
[Crossref] [PubMed]

Gene Ther. (1)

V. Busskamp, S. Picaud, J. A. Sahel, and B. Roska, “Optogenetic therapy for retinitis pigmentosa,” Gene Ther. 19(2), 169–175 (2012).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and H. Takahashi, “Light-addressed stimulation under Ca(2+) imaging of cultured neurons,” IEEE Trans. Biomed. Eng. 56(11), 2660–2665 (2009).
[Crossref] [PubMed]

J. Neural Eng. (2)

N. Farah, A. Zoubi, S. Matar, L. Golan, A. Marom, C. R. Butson, I. Brosh, and S. Shoham, “Holographically patterned activation using photo-absorber induced neural-thermal stimulation,” J. Neural Eng. 10(5), 056004 (2013).
[Crossref] [PubMed]

N. Herzog, M. Shein-idelson, and Y. Hanein, “Optical validation of in vitro extra-cellular neuronal recordings,” J. Neural Eng. 8, 056008 (2011).

Nano Lett. (1)

L. Bareket, N. Waiskopf, D. Rand, G. Lubin, M. David-Pur, J. Ben-Dov, S. Roy, C. Eleftheriou, E. Sernagor, O. Cheshnovsky, U. Banin, and Y. Hanein, “Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas,” Nano Lett. 14(11), 6685–6692 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Ghezzi, M. R. Antognazza, M. Dal Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2, 166 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

A. M. Leifer, C. Fang-Yen, M. Gershow, M. J. Alkema, and A. D. T. Samuel, “Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans,” Nat. Methods 8(2), 147–152 (2011).
[Crossref] [PubMed]

Nat. Neurosci. (2)

T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani, and B. Roska, “Approach sensitivity in the retina processed by a multifunctional neural circuit,” Nat. Neurosci. 12(10), 1308–1316 (2009).
[Crossref] [PubMed]

A. M. Packer, B. Roska, and M. Häusser, “Targeting neurons and photons for optogenetics,” Nat. Neurosci. 16(7), 805–815 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Ghezzi, M. R. Antognazza, R. Maccarone, S. Bellani, E. Lanzarini, N. Martino, M. Mete, G. Pertile, S. Bisti, G. Lanzani, and F. Benfenati, “A polymer optoelectronic interface restores light sensitivity in blind rat retinas,” Nat. Photonics 7(5), 400–406 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

P. Zhu, O. Fajardo, J. Shum, Y.-P. Zhang Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7(7), 1410–1425 (2012).
[Crossref] [PubMed]

Nature (1)

F. Blumhagen, P. Zhu, J. Shum, Y.-P. Z. Schärer, E. Yaksi, K. Deisseroth, and R. W. Friedrich, “Neuronal filtering of multiplexed odour representations,” Nature 479(7374), 493–498 (2011).
[Crossref] [PubMed]

Neuron (1)

J. L. L. Carvalho-de-Souza, J. S. S. Treger, B. Dang, S. B. H. B. H. Kent, D. R. R. Pepperberg, and F. Bezanilla, “Photosensitivity of neurons enabled by cell-targeted gold nanoparticles,” Neuron 86(1), 207–217 (2015).
[Crossref] [PubMed]

Neurosci. Res. (2)

S. Sakai, K. Ueno, T. Ishizuka, and H. Yawo, “Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector,” Neurosci. Res. 75(1), 59–64 (2013).
[Crossref] [PubMed]

S. Tsuda, M. Z. L. Kee, C. Cunha, J. Kim, P. Yan, L. M. Loew, and G. J. Augustine, “Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging,” Neurosci. Res. 75(1), 76–81 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

PLoS One (1)

X. Han and E. S. Boyden, “Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution,” PLoS One 2(3), e299 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

N. Chakrova, B. Rieger, and S. Stallinga, “Development of a DMD-based fluorescence microscope,” Proc. SPIE 9330, 933008 (2015).
[Crossref]

Sci. Rep. (3)

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref] [PubMed]

P. Feyen, E. Colombo, D. Endeman, M. Nova, L. Laudato, N. Martino, M. R. Antognazza, G. Lanzani, F. Benfenati, and D. Ghezzi, “Light-evoked hyperpolarization and silencing of neurons by conjugated polymers,” Sci. Rep. 6(1), 22718 (2016).
[Crossref] [PubMed]

Y. M. Tamar Arens-Arad, N. Faraha, S. Ben-Yaishc, and A. Zlotnikc, “Head mounted DMD based projection system for natural and prosthetic visual stimulation in freely moving rats,” Sci. Rep. 6, 4–11 (2016).

Small (1)

K. Eom, J. Kim, J. M. Choi, T. Kang, J. W. Chang, K. M. Byun, S. B. Jun, and S. J. Kim, “Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods,” Small 10(19), 3853–3857 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the patterned illumination system. This system consists of NIR laser source, reflective mirror, DMD, MATLAB-based GUI program, microscope frame, beam splitter (BS), dichroic mirror (DM) and objective lens (OBJ). The GNR array chip was used for converting plasmonic photothermal stimulation.

Fig. 2
Fig. 2

Characterization of the effective pixel area and power transmittance. (a) Reflected illumination pattern from sample substrate. Magnified circular fiber tip image truncated by DMD height limit is presented in CCD field of view (top). The outer red square indicates DMD area and inner white squares indicates unit areas for power measurement. Spatial power profile measured from (a) in 9 x 16 resolution by scanning method (bottom). The scale bar, calculated by 20X image, shows the width of measurement unit (380 × 380 μm2) in actual DMD. (b) One dimensional profile of normalized power density of three rows in the middle of power profile (blue) and averaged one (red). The measurement was obtained by 20X water immersion lens with high NA (0.5). (c) Simplified beam path with optical components that transfer or reflect light. In all case, beam size was smaller than sensor area of the power meter. (d) The relative power of each position in (c).

Fig. 3
Fig. 3

The spatial line width of 20X magnification condition. Reflected illumination line pattern substrate: vertical lines (a, top), horizontal lines (b, top). The intensity profile of red line from the upper figure for different vertical line width (a, bottom) and horizontal line width (b, bottom). Intensity profile was normalized by the mean value of intensity in the case of whole pixel activation from 140~170 μm (vertical) and 130-160 μm (horizontal). (c) Reflected images of various NIR patterns (four-circles (top), donut (bottom)) under low intensity background illumination (Inset: binary mask patterns).

Fig. 4
Fig. 4

Fluorescence thermal imaging of GNR coated substrate. (a) The experimental diagram to measure fluorescence intensity during patterned illumination. Dichroic mirror; DM, excitation filter; EX, emission filter; EM, tube lens; L. (DM1: 505 nm, DM2: 770 nm cut off, EX: 420-460 nm, EM: 575-624 nm, 3OD@785 nm). (b) The relationship between temperature and normalized fluorescence intensity change. (c) Calculated temperature dynamics from three different illumination condition (4X, 20X, 40X). For each magnification, three trials were normalized by pre-illumination value and averaged. Despite low NIR transmittance of emission filter (3 OD), reflected NIR pattern was captured during fluorescence imaging, which results in a slight offset in calculated temperature (4X result). (d-e) Spatial heat profile for the non-illumination period (before 5 s) (d) and during illumination (5 s after laser on) (e). The white square indicates DMD area and the red circle indicates a pattern (70 μm diameter) that is projected using 20X water immersion lens. The power density of pattern was 456 mW/mm2. The images were averaged over 12 trials and smoothened for visual clarification using 5 × 5 median filter.

Fig. 5
Fig. 5

Area specific neural suppression. (a) Phase contrast image of a cultured hippocampal neuronal network on a GNR-coated MEA. White arrow and dashed line show recording electrode (ch13) and illumination area, respectively. The location of three electrodes (ch13, ch35, and ch64) are marked in the electrode layout (right). (b) Reflected image from MEA under illumination of a different pattern whose center is ch13 (arrow) under 4X magnification. (c) Simultaneous neural recording from three electrodes (ch13, ch35, and ch64) for different illumination pattern diameter. (d) Spike rate change of ch13, ch35, and ch64 during for different illumination diameters. Power density was 35 mW/mm2.

Fig. 6
Fig. 6

Prevention of light-induced artifact for photothermal neural inhibition experiment. (a) Neural spike recording under the circular illumination (165 μm diameter) including a recording TiN (30 μm diameter, white arrow). Light-induced noise artifact is shown during the illumination. (b) Artifact-free neural spike recording with the electrode mask pattern. Objective lens: 20X. The red bar shows the illumination period.

Metrics