Abstract

We report a fiber optics-based intravital fluorescence imaging platform that includes epi-fluorescence microscopy and laser patterned-light stimulation system. The platform can perform real-time fluorescence imaging with a lateral resolution of ~4.9 μm while directly inserted into the intact mouse brain, optically stimulate vasoconstriction during real-time imaging, and avoid vessel damage in the penetration path of imaging probe. Using 473-nm patterned-light stimulation, we successfully modulated the vasoconstriction of a single targeted 37-μm-diameter blood vessel located more than 4.7 mm below the brain surface of a live SM22-ChR2 mouse. This platform may permit the hemodynamic studies associated with deeper brain neurovascular disorders.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy

Yoriko Ando, Takashi Sakurai, Kowa Koida, Hajime Tei, Akiko Hida, Kazuki Nakao, Mistuo Natsume, and Rika Numano
Biomed. Opt. Express 7(3) 963-978 (2016)

Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

Jun Miyazaki, Tadatsune Iida, Shinji Tanaka, Akiko Hayashi-Takagi, Haruo Kasai, Shigeo Okabe, and Takayoshi Kobayashi
Biomed. Opt. Express 7(5) 1702-1710 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
    [Crossref] [PubMed]
  2. B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
    [Crossref] [PubMed]
  3. H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100(1), 328–335 (2006).
    [Crossref] [PubMed]
  4. C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
    [Crossref] [PubMed]
  5. T. Misgeld and M. Kerschensteiner, “In vivo imaging of the diseased nervous system,” Nat. Rev. Neurosci. 7(6), 449–463 (2006).
    [Crossref] [PubMed]
  6. R. E. Jacobs and S. R. Cherry, “Complementary emerging techniques: high-resolution PET and MRI,” Curr. Opin. Neurobiol. 11(5), 621–629 (2001).
    [Crossref] [PubMed]
  7. R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
    [Crossref] [PubMed]
  8. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
    [Crossref] [PubMed]
  9. T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
    [Crossref] [PubMed]
  10. U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
    [Crossref] [PubMed]
  11. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
    [Crossref] [PubMed]
  12. S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
    [Crossref] [PubMed]
  13. R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
    [Crossref] [PubMed]
  14. C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
    [Crossref] [PubMed]
  15. S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
    [PubMed]
  16. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
    [Crossref] [PubMed]
  17. M. Murayama and M. E. Larkum, “In vivo dendritic calcium imaging with a fiberoptic periscope system,” Nat. Protoc. 4(10), 1551–1559 (2009).
    [Crossref] [PubMed]
  18. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
    [Crossref] [PubMed]
  19. R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
    [Crossref] [PubMed]
  20. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [Crossref] [PubMed]
  21. L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
    [Crossref] [PubMed]
  22. Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36(7), 1029–1031 (2011).
    [Crossref] [PubMed]
  23. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
    [Crossref] [PubMed]
  24. V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
    [Crossref] [PubMed]
  25. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  26. Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
    [Crossref] [PubMed]
  27. L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
    [Crossref] [PubMed]
  28. K. B. J. Franklin and G. Paxinos, The Mouse Brainin Stereotaxic Coordinates (Academic Press, 1997).
  29. J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
    [Crossref] [PubMed]
  30. Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
    [Crossref] [PubMed]
  31. T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
    [Crossref] [PubMed]
  32. W. R. Ferrell and A. Khoshbaten, “Responses of blood vessels in the rabbit knee to electrical stimulation of the joint capsule,” J. Physiol. 423(1), 569–578 (1990).
    [Crossref] [PubMed]
  33. J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
    [Crossref] [PubMed]
  34. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
    [Crossref] [PubMed]
  35. A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
    [Crossref] [PubMed]
  36. P. Bregestovski and Y. Zilberter, “Optogenetics to help exploring the cerebral blood flow regulation,” Front. Pharmacol. 5, 107 (2014).
    [Crossref] [PubMed]
  37. L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).
  38. V. Labat-gest and S. Tomasi, “Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies,” J. Vis. Exp. (76): (2013).
  39. A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
    [Crossref] [PubMed]

2017 (2)

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[PubMed]

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

2015 (2)

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

2014 (2)

P. Bregestovski and Y. Zilberter, “Optogenetics to help exploring the cerebral blood flow regulation,” Front. Pharmacol. 5, 107 (2014).
[Crossref] [PubMed]

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

2012 (2)

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

2011 (4)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett. 36(7), 1029–1031 (2011).
[Crossref] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

2010 (2)

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

2009 (2)

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

M. Murayama and M. E. Larkum, “In vivo dendritic calcium imaging with a fiberoptic periscope system,” Nat. Protoc. 4(10), 1551–1559 (2009).
[Crossref] [PubMed]

2007 (2)

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

2006 (3)

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100(1), 328–335 (2006).
[Crossref] [PubMed]

T. Misgeld and M. Kerschensteiner, “In vivo imaging of the diseased nervous system,” Nat. Rev. Neurosci. 7(6), 449–463 (2006).
[Crossref] [PubMed]

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

2004 (5)

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

R. E. Jacobs and S. R. Cherry, “Complementary emerging techniques: high-resolution PET and MRI,” Curr. Opin. Neurobiol. 11(5), 621–629 (2001).
[Crossref] [PubMed]

2000 (1)

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

1998 (1)

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

1992 (1)

U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
[Crossref] [PubMed]

1990 (1)

W. R. Ferrell and A. Khoshbaten, “Responses of blood vessels in the rabbit knee to electrical stimulation of the joint capsule,” J. Physiol. 423(1), 569–578 (1990).
[Crossref] [PubMed]

Akerboom, J.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

An, J.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Aravanis, A. M.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Attardo, A.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Azimipour, M.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Bargmann, C. I.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Barretto, R. P.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Baumgartner, R.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Botnar, R. M.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Bradley, J.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Bregestovski, P.

P. Bregestovski and Y. Zilberter, “Optogenetics to help exploring the cerebral blood flow regulation,” Front. Pharmacol. 5, 107 (2014).
[Crossref] [PubMed]

Brinton, M.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Brodnick, S. K.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Brunenberg, E. J.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Burr, O.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Buxton, R. B.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

Capps, G.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Carreras Calderón, N.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Chen, T. W.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Chen, Y. Y.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Cherry, S. R.

R. E. Jacobs and S. R. Cherry, “Complementary emerging techniques: high-resolution PET and MRI,” Curr. Opin. Neurobiol. 11(5), 621–629 (2001).
[Crossref] [PubMed]

Cheung, E. L.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cui, N.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Dalal, R.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Dannhardt, V.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Davidson, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

De Sars, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Deisseroth, K.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Delgado-Martínez, I.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Denk, W.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Dirnagl, U.

U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
[Crossref] [PubMed]

Dombeck, D. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Dubowitz, D. J.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

Ebner, F. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Einhäupl, K. M.

U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
[Crossref] [PubMed]

Eliceiri, K. W.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Emiliani, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Engels, W.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Erzurumlu, R.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Fenno, L. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Ferrell, W. R.

W. R. Ferrell and A. Khoshbaten, “Responses of blood vessels in the rabbit knee to electrical stimulation of the joint capsule,” J. Physiol. 423(1), 569–578 (1990).
[Crossref] [PubMed]

Fischer, E.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Ford, T. N.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Friedman, B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Frohlich, V. C.

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

Garling, R. J.

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

Girouard, H.

H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100(1), 328–335 (2006).
[Crossref] [PubMed]

Gordus, A.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Gottschalk, A.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Gradinaru, V.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Hegemann, P.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Helmchen, F.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Henderson, J. M.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Hong, J. K.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Hu, S.

Huie, P.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Iadecola, C.

H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100(1), 328–335 (2006).
[Crossref] [PubMed]

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

Jacobs, R. E.

R. E. Jacobs and S. R. Cherry, “Complementary emerging techniques: high-resolution PET and MRI,” Curr. Opin. Neurobiol. 11(5), 621–629 (2001).
[Crossref] [PubMed]

Jang, J. Y.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Janigro, D.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Janssen, B. J.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Jiang, C.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Jiao, S.

Jin, X.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Jung, J. C.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[Crossref] [PubMed]

Kang, T. M.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Kasischke, K. A.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Kerschensteiner, M.

T. Misgeld and M. Kerschensteiner, “In vivo imaging of the diseased nervous system,” Nat. Rev. Neurosci. 7(6), 449–463 (2006).
[Crossref] [PubMed]

Khoshbaten, A.

W. R. Ferrell and A. Khoshbaten, “Responses of blood vessels in the rabbit knee to electrical stimulation of the joint capsule,” J. Physiol. 423(1), 569–578 (1990).
[Crossref] [PubMed]

Kim, D. S.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Kim, W. Y.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Kissinger, K. V.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Kleinfeld, D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Ko, T. H.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Krizanac-Bengez, L.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Krugner-Higby, L. A.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Kügler, S.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Labat-gest, V.

V. Labat-gest and S. Tomasi, “Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies,” J. Vis. Exp. (76): (2013).

Lagnado, L.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Lai, H. Y.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Larkum, M. E.

M. Murayama and M. E. Larkum, “In vivo dendritic calcium imaging with a fiberoptic periscope system,” Nat. Protoc. 4(10), 1551–1559 (2009).
[Crossref] [PubMed]

Lechleiter, J. D.

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

Lee, K. S.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Leenders, P. J.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Levene, M. J.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Li, M. L.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Li, S. S.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Liao, L. D.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Lim, D.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Lin, Y. R.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Liu, T.

Liu, T. T.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

Looger, L. L.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Lyden, P. D.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Macklin, J. J.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Mandel, Y.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Manivanh, R.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Manning, W. J.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Martinez, L.

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

Marvin, J. S.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Maslov, K.

Mayberg, M. R.

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Megens, R. T.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Meltzer, L. A.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Mertz, J.

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

Misgeld, T.

T. Misgeld and M. Kerschensteiner, “In vivo imaging of the diseased nervous system,” Nat. Rev. Neurosci. 7(6), 449–463 (2006).
[Crossref] [PubMed]

Mitra, P. P.

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Mogri, M.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Molloy, R. P.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Murayama, M.

M. Murayama and M. E. Larkum, “In vivo dendritic calcium imaging with a fiberoptic periscope system,” Nat. Protoc. 4(10), 1551–1559 (2009).
[Crossref] [PubMed]

Murphy, T. H.

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Nakamura, S.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[PubMed]

Nishimura, N.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Oechsner, M.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Orellana, J.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Orger, M. B.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

oude Egbrink, M. G.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Palanker, D.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Pashaie, R.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Patel, R.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Pöhler, M.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Prigge, M.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Prinzen, L.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Pulver, S. R.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Rancillac, A.

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

Recht, L.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Reesink, K. D.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Reitsma, S.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Reuter, I.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Richner, T. J.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Rosengarten, B.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Rosengarten, S.

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

Rossier, J.

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

Sarkisyan, K. S.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Schaffer, C. B.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Schneider, M. B.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Schnitzer, M. J.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
[Crossref] [PubMed]

Schreiter, E. R.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Schroeder, L. F.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Schüler, C.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Severi, K. E.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Shin, H. J.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Slaaf, D. W.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Spuentrup, E.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

Stuber, M.

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Suh, J. F.

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Szabo, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Talley Watts, L.

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

ter Haar Romeny, B. M.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Thakor, N. V.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Thompson, K. R.

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Tian, L.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Tolö, J.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Tomasi, S.

V. Labat-gest and S. Tomasi, “Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies,” J. Vis. Exp. (76): (2013).

Tsai, P. S.

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Tsytsarev, V.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Uludag, K.

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

Urban, A.

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

van Zandvoort, M. A.

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

Ventalon, C.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Villringer, A.

U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
[Crossref] [PubMed]

Vipin, A.

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Wabnig, S.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Walker, D. W.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[PubMed]

Wang, J.

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express 2(5), 1359–1365 (2011).
[Crossref] [PubMed]

Wang, L. P.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Wang, L. V.

Wang, T. J.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Wang, Y.

Wardill, T. J.

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Waters, A. C.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Webb, W. W.

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

Wei, Q.

Williams, J. C.

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

Wong, F. Y.

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[PubMed]

Wu, Y.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Xia, Y.

Yizhar, O.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Zhang, F.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, S.

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

Zhang, Y.

Zheng, W.

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

Zilberter, Y.

P. Bregestovski and Y. Zilberter, “Optogenetics to help exploring the cerebral blood flow regulation,” Front. Pharmacol. 5, 107 (2014).
[Crossref] [PubMed]

Ziv, Y.

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

L. D. Liao, V. Tsytsarev, I. Delgado-Martínez, M. L. Li, R. Erzurumlu, A. Vipin, J. Orellana, Y. R. Lin, H. Y. Lai, Y. Y. Chen, and N. V. Thakor, “Neurovascular coupling: in vivo optical techniques for functional brain imaging,” Biomed. Eng. Online 12(1), 38 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Circulation (1)

R. M. Botnar, M. Stuber, K. V. Kissinger, W. Y. Kim, E. Spuentrup, and W. J. Manning, “Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging,” Circulation 102(21), 2582–2587 (2000).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

R. E. Jacobs and S. R. Cherry, “Complementary emerging techniques: high-resolution PET and MRI,” Curr. Opin. Neurobiol. 11(5), 621–629 (2001).
[Crossref] [PubMed]

Front. Mol. Neurosci. (1)

J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T. W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics,” Front. Mol. Neurosci. 6, 2 (2013).
[Crossref] [PubMed]

Front. Pharmacol. (2)

A. Urban, A. Rancillac, L. Martinez, and J. Rossier, “Deciphering the neuronal circuitry controlling local blood flow in the cerebral cortex with optogenetics in PV:Cre transgenic mice,” Front. Pharmacol. 3, 105 (2012).
[Crossref] [PubMed]

P. Bregestovski and Y. Zilberter, “Optogenetics to help exploring the cerebral blood flow regulation,” Front. Pharmacol. 5, 107 (2014).
[Crossref] [PubMed]

J. Alzheimers Dis. (1)

B. Rosengarten, V. Dannhardt, O. Burr, M. Pöhler, S. Rosengarten, M. Oechsner, and I. Reuter, “Neurovascular coupling in Parkinson’s disease patients: effects of dementia and acetylcholinesterase inhibitor treatment,” J. Alzheimers Dis. 22(2), 415–421 (2010).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

H. Girouard and C. Iadecola, “Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease,” J. Appl. Physiol. 100(1), 328–335 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

R. T. Megens, S. Reitsma, L. Prinzen, M. G. oude Egbrink, W. Engels, P. J. Leenders, E. J. Brunenberg, K. D. Reesink, B. J. Janssen, B. M. ter Haar Romeny, D. W. Slaaf, and M. A. van Zandvoort, “In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy,” J. Biomed. Opt. 15(1), 011108 (2010).
[Crossref] [PubMed]

T. N. Ford, D. Lim, and J. Mertz, “Fast optically sectioned fluorescence HiLo endomicroscopy,” J. Biomed. Opt. 17(2), 021105 (2012).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

T. J. Richner, R. Baumgartner, S. K. Brodnick, M. Azimipour, L. A. Krugner-Higby, K. W. Eliceiri, J. C. Williams, and R. Pashaie, “Patterned optogenetic modulation of neurovascular and metabolic signals,” J. Cereb. Blood Flow Metab. 35(1), 140–147 (2015).
[Crossref] [PubMed]

J. Microsc. (1)

U. Dirnagl, A. Villringer, and K. M. Einhäupl, “In-vivo confocal scanning laser microscopy of the cerebral microcirculation,” J. Microsc. 165(1), 147–157 (1992).
[Crossref] [PubMed]

J. Neural Eng. (1)

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

J. Neurophysiol. (2)

M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol. 91(4), 1908–1912 (2004).
[Crossref] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004).
[Crossref] [PubMed]

J. Physiol. (2)

W. R. Ferrell and A. Khoshbaten, “Responses of blood vessels in the rabbit knee to electrical stimulation of the joint capsule,” J. Physiol. 423(1), 569–578 (1990).
[Crossref] [PubMed]

S. Nakamura, D. W. Walker, and F. Y. Wong, “Cerebral haemodynamic response to somatosensory stimulation in near-term fetal sheep,” J. Physiol. 595(4), 1289–1303 (2017).
[PubMed]

Nat. Med. (1)

R. P. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med. 17(2), 223–228 (2011).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Protoc. (1)

M. Murayama and M. E. Larkum, “In vivo dendritic calcium imaging with a fiberoptic periscope system,” Nat. Protoc. 4(10), 1551–1559 (2009).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (2)

C. Iadecola, “Neurovascular regulation in the normal brain and in Alzheimer’s disease,” Nat. Rev. Neurosci. 5(5), 347–360 (2004).
[Crossref] [PubMed]

T. Misgeld and M. Kerschensteiner, “In vivo imaging of the diseased nervous system,” Nat. Rev. Neurosci. 7(6), 449–463 (2006).
[Crossref] [PubMed]

Neuroimage (1)

R. B. Buxton, K. Uludağ, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23(Suppl 1), S220–S233 (2004).
[Crossref] [PubMed]

Neurol. Res. (1)

L. Krizanac-Bengez, M. R. Mayberg, and D. Janigro, “The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology,” Neurol. Res. 26(8), 846–853 (2004).
[Crossref] [PubMed]

Neuron (2)

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

PLoS Biol. (2)

S. Zhang and T. H. Murphy, “Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo,” PLoS Biol. 5(5), e119 (2007).
[Crossref] [PubMed]

C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder, P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol. 4(2), e22 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A. 95(26), 15741–15746 (1998).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Mandel, R. Manivanh, R. Dalal, P. Huie, J. Wang, M. Brinton, and D. Palanker, “Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage,” Sci. Rep. 3(1), 2111 (2013).
[Crossref] [PubMed]

J. H. Park, J. K. Hong, J. Y. Jang, J. An, K. S. Lee, T. M. Kang, H. J. Shin, and J. F. Suh, “Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction,” Sci. Rep. 7, 40872 (2017).
[Crossref] [PubMed]

Science (1)

V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science 324(5925), 354–359 (2009).
[Crossref] [PubMed]

Vascul. Pharmacol. (1)

Y. Wu, S. S. Li, X. Jin, N. Cui, S. Zhang, and C. Jiang, “Optogenetic approach for functional assays of the cardiovascular system by light activation of the vascular smooth muscle,” Vascul. Pharmacol. 71, 192–200 (2015).
[Crossref] [PubMed]

Other (3)

K. B. J. Franklin and G. Paxinos, The Mouse Brainin Stereotaxic Coordinates (Academic Press, 1997).

L. Talley Watts, W. Zheng, R. J. Garling, V. C. Frohlich, and J. D. Lechleiter, “Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke,” J. Vis. Exp. (100), e52794 (2015).

V. Labat-gest and S. Tomasi, “Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies,” J. Vis. Exp. (76): (2013).

Supplementary Material (5)

NameDescription
» Visualization 1: AVI (386 KB)      FITC fluorescence cerebrovascular video with bleeding due to vessel damage by excessive insertion of a 620-µm fiber bundle into the brain of living B6 wild-type adult mouse.
» Visualization 2: AVI (693 KB)      FITC fluorescence cerebrovascular video in deep brain over 500-µm from the surface of living B6 wild-type adult mouse by direct insertion of a 330-µm fiber bundle.
» Visualization 3: AVI (499 KB)      FITC fluorescence cerebrovascular video of the brain surface of living B6 wild-type adult mouse by direct insertion of a 620-µm fiber bundle.
» Visualization 4: AVI (844 KB)      In vivo real-time fluorescence images targeting Ad-CMV-mCherry expressing neurons in deep brain of living B6 wild-type adult mouse by inserting a 330-µm fiber bundle.
» Visualization 5: AVI (4113 KB)      Video of vasoconstriction in a single cerebral blood vessel using patterned light stimulation at 4.7 mm below the cortical surface of living ChR2 transgenic mouse (SM22(CAG-ChR2-EYFP)).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A fiber bundle-based integrated platform. A) Schematic of the fiber bundle-based integrated platform; includes multi-color fluorescent light illumination, fluorescence imaging, and patterned 473-nm light stimulation. The enlarged image inside the black box is a photograph of the fiber bundle. (B) Captured spatial light modulator (SLM) stimulation pattern of the Korea Institute of Science and Technology (KIST) logo at the output end of the fiber bundle (left); measurement of core-to-core distance at the output end of the fiber bundle (right). (C) Captured stimulation image (left) and line profile (right) of SLM stimulation pattern of rectangle pattern of 5 × 5 pixels at fiber bundle end-plane. This pattern matches the size of a single fiber core. Abbreviations: BS: beam splitter; PBS: polarizing beam splitter; ND: neutral density; L1&L2: achromatic doublet, f = 100 mm; L3: achromatic doublet, f = 150 mm; L4: achromatic doublet, f = 75 mm. Scale bars: (A) 1 mm and (B-C) 50 μm.
Fig. 2
Fig. 2 Optical properties of the fiber bundle-based integrated platform and imaging post-processing. A) Image of 1951 USAF resolution target. The red box represents the region of minimum resolvable vertical and horizontal patterns of elements 4 and 5 in group 7 (181 lp/mm, 209 lp/mm); before imaging post-processing (left) and after imaging post-processing (right). (B) Line profile of vertical and horizontal patterns of elements 5 in group 7 in the image of (A). (C) Immunocytochemistry (ICC) images of cultured dorsal root ganglion cells (DRGs) taken by the platform: the blue, green, and red images represent nucleus, tubulin (cytoplasm), and tau (axons) proteins, respectively, in DRGs. (D) Line profile of red dashed line in merged image of (C). Scale bars: (A, C) 50 μm.
Fig. 3
Fig. 3 Real-time fluorescent blood vessel imaging using two types of optical fiber bundles with different diameters. FITC-Dextran (200 kDa, 7.5 mg in 0.2 mL saline) was injected through the vein in the tail before the in vivo imaging. Frames A–C and F were obtained with the 620-μm fiber bundle, and frames D and E were obtained with the 330-μm fiber bundle. (A) Blood vessel image showing bleeding from excessive contact with the fiber bundle (see Visualization 1). (B) Image of uneven contact with the brain surface. (C) Blood-vessel imaging of the brain surface (see Visualization 3). (D) Blood vessel image at the superficial level, and (E) the image from the same frame at a depth of greater than 500 μm (see Visualization 2). (F) Cropped and magnified image sequence of the region in the white box in (C): the red, blue, green, and white arrowheads indicate individual red blood cells, and their progress can be tracked within the capillary; the relative times in seconds are displayed in the upper left corner of each image in the sequence. The mean blood flow rate measured for 2.6 s is 23 μm/s. The frame rate was 5 frames/s, and the exposure time was 200 ms. The illumination light output intensity was 1.2 mW/mm2. Scale bars: (A–C) 100 μm, (D, E) 50 μm, and (F) 20 μm.
Fig. 4
Fig. 4 In-vivo real-time fluorescence images of Ad-CMV-mCherry expressing neurons in a mouse’s deep brain. A) Brain atlas showing the injection region. (B) Photograph of the in-vivo deep-brain imaging experiment. (C) Images of the 100-μm-thick parasagittal slices, cut after the deep-brain imaging; the y-axis indicates the depth. (D) Intensity of the region of interest (ROI) according to the insertion depth; vertical gray lines indicate standard deviation ( ± SD, n = 308). (E) The deep-brain images according to various depths 6 days after the injection of Ad-CMV-mCherry (see Visualization 4); the depth is displayed in the upper left corner of each image. The frame rate is 10 frames/s, the exposure time is 100 ms, and the output intensity of the illumination light is 15 mW/mm2. Scale bars: (A) 1 mm and (E) 50 μm.
Fig. 5
Fig. 5 Control and monitoring of the single cerebral blood vessel using patterned light stimulation in the deep brain of ChR2 transgenic mice (SM22(CAG-ChR2-EYFP)) and B6 control mice. A) Images of vasoconstriction in a single cerebral blood vessel using whole patterned light stimulation at 2.3 mm below the cortical surface of the brain of the control mouse: i) No stimulation and ii) Stimulation using whole pattern. (B) Images of dynamic vasoconstriction in a single cerebral blood vessel illuminated with an excitation light of 170-μW/mm2 intensity for EYFP fluorescence imaging at 2.5 mm below the cortical surface of the brain of a ChR2 transgenic mouse: i) The first image frame, ii) After the seventh image frame, (arrowheads indicate the single blood vessel in which dynamic vasoconstriction is induced by illumination). (C) Images of vasoconstriction in a single cerebral blood vessel using patterned light stimulation at 4.7 mm below the cortical surface (see Visualization 5): (i, ii, v–viii) Fluorescence imaging of a blood vessel with EYFP in the deep brain of a ChR2 transgenic mouse (SM22(CAG-ChR2-EYFP)), where the arrows indicate the targeted single blood vessel that shrank in response to light stimulations, and the white dashed lines indicate the light patterns; i) No stimulation, enhanced by green pseudo-color, ii) Stimulation using whole pattern, enhanced by red pseudo-color, iii) Image formed by merging (i) and (ii), where yellow indicates the merged region, iv) Cropped and magnified image of the region in the red box in (iii), (v–viii) The distance in the upper left corner of the figures is the distance between the center of the blood vessel and the center of the 60 × 600 μm2 rectangular pattern. The diameter of blood vessel was measured at 2 seconds after optical stimulation. The optical stimulation parameters were controlled by a function generator remote controller, a SLM calibration software control, and the ND filters activated upon blood vessel contraction. The illumination light output intensities are A) 100 μW/mm2, B) 170 μW/mm2, and C) 50 μW/mm2; and the laser stimulation output intensities are A) 1.4 mW/mm2 and C) 200 μW/mm2. The duration of the stimulus pulse is fixed at 2 s; the frame rates are (A, C) 2 frames/s and (B) 3 frames/s; and the exposure times are (A, C) 500 ms and (B) 300 ms. Scale bar: (A, B, C (i–iii, v–viii)) 50 μm, (C (iv)) 10 μm.

Metrics