Abstract

Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parallel line scanning ophthalmoscope for retinal imaging

Kari V. Vienola, Mathi Damodaran, Boy Braaf, Koenraad A. Vermeer, and Johannes F. de Boer
Opt. Lett. 40(22) 5335-5338 (2015)

Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope

Stephen A. Burns, Remy Tumbar, Ann E. Elsner, Daniel Ferguson, and Daniel X. Hammer
J. Opt. Soc. Am. A 24(5) 1313-1326 (2007)

Digital micromirror device-based laser-illumination Fourier ptychographic microscopy

Cuifang Kuang, Ye Ma, Renjie Zhou, Justin Lee, George Barbastathis, Ramachandra R. Dasari, Zahid Yaqoob, and Peter T. C. So
Opt. Express 23(21) 26999-27010 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Elsner, A. H. Jalkh, and J. J. Weiter, “New devices in retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Raven Press, 1993), pp. 19–35.
  2. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).
    [Crossref] [PubMed]
  3. M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
    [Crossref] [PubMed]
  4. D. A. Atchison and G. Smith, “Optics of the Human Eye”, ed. (Butterworth Heinemann, 2000), pp. 34–35.
  5. R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
    [Crossref] [PubMed]
  6. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980).
    [Crossref] [PubMed]
  7. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo,” Appl. Opt. 38(10), 2105–2115 (1999).
    [Crossref]
  8. A. Plesch, U. Klingbeil, and J. Bille, “Digital laser scanning fundus camera,” Appl. Opt. 26(8), 1480 (1987).
    [Crossref] [PubMed]
  9. A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
    [Crossref] [PubMed]
  10. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [Crossref] [PubMed]
  11. K. Kobayashi and T. Asakura, “Imaging techniques and applications of the scanning laser ophthalmoscope,” Opt. Eng. 34(3), 717–726 (2005).
  12. A. E. Elsner, S. A. Burns, G. W. Hughes, and R. H. Webb, “Reflectometry with a scanning laser ophthalmoscope,” Appl. Opt. 31(19), 3697–3710 (1992).
    [Crossref] [PubMed]
  13. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
    [Crossref] [PubMed]
  14. Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).
  15. K. Im, S. Han, H. Park, D. Kim, and B. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13(13), 5151–5156 (2005).
    [Crossref] [PubMed]
  16. N. V. Iftimia, D. X. Hammer, C. E. Bigelow, T. Ustun, J. F. de Boer, and R. D. Ferguson, “Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Opt. Express 14(26), 12909–12914 (2006).
    [Crossref] [PubMed]
  17. K. V. Vienola, M. Damodaran, B. Braaf, K. A. Vermeer, and J. F. de Boer, “Parallel line scanning ophthalmoscope for retinal imaging,” Opt. Lett. 40(22), 5335–5338 (2015).
    [Crossref] [PubMed]
  18. B. Lochocki, A. Gambin, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3(10), 1056–1059 (2016).
    [Crossref]
  19. M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
    [Crossref]
  20. E. DeHoog and J. Schwiegerling, “Optimal parameters for retinal illumination and imaging in fundus cameras,” Appl. Opt. 47(36), 6769–6777 (2008).
    [Crossref] [PubMed]
  21. International Electrotechnical Commission, Safety of Laser Products Part 1: Equipment Classification and Requirements, (Geneva, Switzerland), IEC-60825-1 (2014).
  22. Y. C. Huang and J. W. Pan, “High contrast ratio and compact sized prism for DLP projection system,” Opt. Express 22(14), 17016–17029 (2014).
    [Crossref] [PubMed]
  23. V. N. Mahajan, “Uniform versus Gaussian beams a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. A 3(4), 470–485 (1986).
    [Crossref]
  24. F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), 0043942 (2012).
    [Crossref]
  25. N. Chakrova, R. Heintzmann, B. Rieger, and S. Stallinga, “Studying different illumination patterns for resolution improvement in fluorescence microscopy,” Opt. Express 23(24), 31367–31383 (2015).
    [Crossref] [PubMed]
  26. R. Heintzmann and P. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45(20), 5037–5045 (2006).
    [Crossref] [PubMed]
  27. W. N. Charman, “Optics of the human eye,” in Visual Optics and Instrumentation, J. C Dillon, ed. (CRC press, 1991), pp. 1–26.
  28. European Machine Vision Association, Standard for Characterization of Image Sensors and Cameras, EMVA Standard 1288, (2016).
  29. A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).
  30. J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
    [Crossref] [PubMed]
  31. H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
    [Crossref] [PubMed]
  32. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
    [Crossref] [PubMed]
  33. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
    [Crossref] [PubMed]
  34. R. W. Knighton and X. Huang, “Linear Birefringence of the Central Human Cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2016).

2016 (2)

R. W. Knighton and X. Huang, “Linear Birefringence of the Central Human Cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2016).

B. Lochocki, A. Gambin, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3(10), 1056–1059 (2016).
[Crossref]

2015 (3)

2014 (2)

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Y. C. Huang and J. W. Pan, “High contrast ratio and compact sized prism for DLP projection system,” Opt. Express 22(14), 17016–17029 (2014).
[Crossref] [PubMed]

2013 (1)

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

2012 (4)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), 0043942 (2012).
[Crossref]

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[Crossref] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[Crossref] [PubMed]

2011 (1)

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

2008 (1)

2006 (3)

2005 (2)

K. Kobayashi and T. Asakura, “Imaging techniques and applications of the scanning laser ophthalmoscope,” Opt. Eng. 34(3), 717–726 (2005).

K. Im, S. Han, H. Park, D. Kim, and B. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13(13), 5151–5156 (2005).
[Crossref] [PubMed]

2002 (1)

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[Crossref] [PubMed]

1999 (1)

1993 (1)

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

1992 (1)

1989 (1)

1987 (2)

1986 (1)

1985 (1)

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

1980 (1)

Anderson, R. R.

Arathorn, D. W.

Artal, P.

Asakura, T.

K. Kobayashi and T. Asakura, “Imaging techniques and applications of the scanning laser ophthalmoscope,” Opt. Eng. 34(3), 717–726 (2005).

Atchison, D. A.

D. A. Atchison and G. Smith, “Optics of the Human Eye”, ed. (Butterworth Heinemann, 2000), pp. 34–35.

Baskaran, K.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Benedetti, P.

Bigelow, C. E.

Bille, J.

Braaf, B.

Brothers, R. J.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Burns, S. A.

Chakrova, N.

Charman, W. N.

W. N. Charman, “Optics of the human eye,” in Visual Optics and Instrumentation, J. C Dillon, ed. (CRC press, 1991), pp. 1–26.

Cheney, M. C.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

Clendenon, J. L.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Damodaran, M.

de Boer, J. F.

DeHoog, E.

Delori, F. C.

Eliasdottir, T. S.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Elsner, A. E.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

A. E. Elsner, S. A. Burns, G. W. Hughes, and R. H. Webb, “Reflectometry with a scanning laser ophthalmoscope,” Appl. Opt. 31(19), 3697–3710 (1992).
[Crossref] [PubMed]

A. E. Elsner, A. H. Jalkh, and J. J. Weiter, “New devices in retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Raven Press, 1993), pp. 19–35.

Ferguson, R. D.

Forrester, J. V.

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

Gambin, A.

Gast, T. J.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Green, J. J.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Halldorsson, G. H.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Hammer, D. X.

Hammer, M.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[Crossref] [PubMed]

Han, S.

Hardarson, S. H.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Hartell, N. A.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), 0043942 (2012).
[Crossref]

He, Y.

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

Heintzmann, R.

Huang, X.

R. W. Knighton and X. Huang, “Linear Birefringence of the Central Human Cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2016).

Huang, Y. C.

Hubbard, L. D.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Hughes, G. W.

Iftimia, N. V.

Im, K.

Ingling, A. W.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Irles, E.

Jalkh, A. H.

A. E. Elsner, A. H. Jalkh, and J. J. Weiter, “New devices in retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Raven Press, 1993), pp. 19–35.

Karlsson, R. A.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Kim, B.

Kim, D.

Klein, B. E.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Klein, R.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Klingbeil, U.

Knighton, R. W.

R. W. Knighton and X. Huang, “Linear Birefringence of the Central Human Cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2016).

Kobayashi, K.

K. Kobayashi and T. Asakura, “Imaging techniques and applications of the scanning laser ophthalmoscope,” Opt. Eng. 34(3), 717–726 (2005).

Kompa, S.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

Kristjansdottir, J. V.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Lancis, J.

Li, H.

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

Lochocki, B.

Lu, J.

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

Mahajan, V. N.

Manivannan, A.

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

Manzanera, S.

Martial, F. P.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), 0043942 (2012).
[Crossref]

Meuer, S. M.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Miura, M.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

Muller, M. S.

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Neider, M. W.

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Pan, J. W.

Park, H.

Pflibsen, K. P.

Phillips, R. P.

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

Plesch, A.

Pomerantzeff, O.

Rajadhyaksha, M.

Rieger, B.

Roorda, A.

Schweitzer, D.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[Crossref] [PubMed]

Schwiegerling, J.

Sharp, P. F.

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

Sheehy, C. K.

Shi, G.

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Optics of the Human Eye”, ed. (Butterworth Heinemann, 2000), pp. 34–35.

Stallinga, S.

Stefansson, E.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Tajahuerce, E.

Tiruveedhula, P.

Ustun, T.

Ustun, T. E.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[Crossref] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Webb, R. H.

Weber, A.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

Weiter, J. J.

A. E. Elsner, A. H. Jalkh, and J. J. Weiter, “New devices in retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Raven Press, 1993), pp. 19–35.

Yang, Q.

Zhang, Y.

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

Appl. Opt. (8)

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

Y. He, H. Li, J. Lu, G. Shi, and Y. Zhang, “Retina imaging by using compact line scanning quasi-confocal ophthalmoscope,” Chin. Opt. Lett. 11(2), 11–13 (2013).

Eye (1)

A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye,  21(3), 130–134 (2012).

Invest. Ophthalmol. Vis. Sci. (2)

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefansson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

R. W. Knighton and X. Huang, “Linear Birefringence of the Central Human Cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2016).

J. Biomed. Opt. (2)

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11(4), 041126 (2006).
[Crossref] [PubMed]

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Ophthalmology (1)

R. Klein, B. E. Klein, M. W. Neider, L. D. Hubbard, S. M. Meuer, and R. J. Brothers, “Diabetic Retinopathy as detected using ophthalmoscopy, a Nonmydriatic camera and a standard fundus camera,” Ophthalmology 92(2), 485–491 (1985).
[Crossref] [PubMed]

Opt. Eng. (1)

K. Kobayashi and T. Asakura, “Imaging techniques and applications of the scanning laser ophthalmoscope,” Opt. Eng. 34(3), 717–726 (2005).

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Med. Biol. (1)

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002).
[Crossref] [PubMed]

Physiol. Meas. (1)

A. Manivannan, P. F. Sharp, R. P. Phillips, and J. V. Forrester, “Digital fundus imaging using a scanning laser ophthalmoscope,” Physiol. Meas. 14(1), 43–56 (1993).
[Crossref] [PubMed]

PLoS One (1)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7(8), 0043942 (2012).
[Crossref]

Proc. SPIE. (1)

M. S. Muller, J. J. Green, K. Baskaran, A. W. Ingling, J. L. Clendenon, T. J. Gast, and A. E. Elsner, “Non-mydriatic confocal retinal imaging using a digital light projector,” Proc. SPIE. 9376, 93760E (2015).
[Crossref]

Other (5)

International Electrotechnical Commission, Safety of Laser Products Part 1: Equipment Classification and Requirements, (Geneva, Switzerland), IEC-60825-1 (2014).

W. N. Charman, “Optics of the human eye,” in Visual Optics and Instrumentation, J. C Dillon, ed. (CRC press, 1991), pp. 1–26.

European Machine Vision Association, Standard for Characterization of Image Sensors and Cameras, EMVA Standard 1288, (2016).

D. A. Atchison and G. Smith, “Optics of the Human Eye”, ed. (Butterworth Heinemann, 2000), pp. 34–35.

A. E. Elsner, A. H. Jalkh, and J. J. Weiter, “New devices in retinal imaging and functional evaluation,” in Practical Atlas of Retinal Disease and Therapy, W. Freeman, ed. (Raven Press, 1993), pp. 19–35.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (14318 KB)      Illustrations Concentric circle scanning : Video shows the scan patterns used to image the fovea and ONH.
» Visualization 2: MP4 (12752 KB)      Video showing 981 confocal frames

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A: Schematic of the optical setup showing both the illumination path (red) and the reflection path (blue). L1–L7: Lenses; P1, P2: Polarisers; A1: Annulus; A2: Circular aperture; PBS: Polarizing Beam Splitter; QWP: Quarter Wave Plate. B: The optical paths and beam shapes at different positions in the setup to block the corneal reflections - A point source in the DMD was relayed to a point in the retina using a 4f system consisting of lenses L3–L5 and the eye lens. An annulus was placed at the conjugate pupil plane between lenses L3 and L4 and was imaged onto the cornea using L4 and L5. The reflection from the retina was relayed to the camera using another 4f system consisting of the eye lens and the lenses L5–L7. The reflection from the cornea formed an image again at the conjugate pupil plane in the detection arm and was blocked by the circular aperture, while the retinal signal passed through the circular aperture.

Fig. 2
Fig. 2

Illustrations of the parallel scanning methods used - A: Spots have been used in fluorescence microscopy for imaging stationary biological samples [24]. B: Parallel lines used in our prior work (PLSO) [17]. C: Concentric circles used in our system for scanning with the centres of the circles in the middle of the frame. D: Concentric circle scanning with the centre of the circles at the edge of the frame (see Visualization 1).

Fig. 3
Fig. 3

The measured variance σ sig 2 σ dark + readout 2 against the mean gray value μsigμdark and the linear regression line used to determine the overall system gain K. σ sig 2 is the variance in signal and μsig is the mean signal. The graph indicated that the gain of the system is 46 electrons/ DN (1/ slope of fitted line) according to the method described in the EMVA standard [28].

Fig. 4
Fig. 4

Calculating the SNR - illustration: A: single frame from the stack of images (Γ = 0.05 illustrated here) is taken and a line profile is plotted (shown as white line). B: The line profile along the white line showing peaks along the signal. C: Each peak is examined to estimate μe,signal and μe,background. This is repeated for several line profiles and the averages of μe,signal and μe,background is recorded.

Fig. 5
Fig. 5

A: The signal and background obtained in the model eye for different imaging speeds. Blue and red lines and points are for the circular aperture and annulus, respectively. B: SNR comparison obtained in the model eye with the annulus and aperture for different imaging speeds. The imaging speed indicated in the top horizontal axis is for a DMD pattern speed of 140 Hz.

Fig. 6
Fig. 6

A: Fundus photograph of subject 1 coloured dashed circles showing the area imaged with our system. B–G: confocal images of the corresponding region showing the fovea and various peri- and parafoveal regions. Scale bar is 2° in the retina.

Fig. 7
Fig. 7

Comparison of the DMD based SLO with a Spectralis SLO - A: Non-confocal image of the inferior region of subject 1. B: Single confocal frame from the DMD based SLO. C: 5 frame average and median filtered image from the DMD based SLO. D and E: Single frame and 20 frame averaged images from the Spectralis SLO. F: Line profiles through the line indicated in A–E crossing through five blood vessels 1–5. The location of the blood vessels is indicated in the top axis. All in-vivo images have a 16.5° FOV.

Fig. 8
Fig. 8

A: Fundus photograph of subject 2 showing the macular region (blue dashed circle) and the ONH region (red dashed circle) of the ocular fundus. B: The macular region with fovea indicated by the red arrow. C: The ONH (indicated by red arrow) with blood vessels surrounding it. Scale bar is 5° in the retina.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Γ = s p .
I conf ( x , y ) = max i = 1. . N [ I ( x , y ; i ) ] min i = 1. . N [ I ( x , y ; i ) ] .
SNR ( μ p ) = η μ p σ d 2 + σ q 2 / K 2 + η μ p
SNR s = η μ p η μ p = μ e μ e
SNR s = μ e , signal μ e , background μ e , signal
SNR s ( Γ ) = α α + β Γ
MPE = 10 W / m 2 × C 4 × C 7 × A Aperture
C 4 = 10 0.002 ( λ 700 ) = 10 0.002 ( 810 700 ) 1.66
MPE = 10 W / m 2 × 1.66 × 1 × π × ( 3.5 × 10 3 m ) 2 = 639 μ W .

Metrics