Abstract

A doublet intraocular lens optimized for both chromatic and monochromatic aberration correction in pseudophakic eyes is presented. Ray-tracing techniques were applied to design the lens in white light within a chromatic eye model. Combinations of two materials, already commonly used in intraocular lenses, as acrylic and silicone, were used. Iterative optimization algorithms were employed to correct for longitudinal chromatic aberration, spherical aberration and off-axis aberrations within 10 degrees of visual field. The performance of this lens was compared with a standard single-material aspheric intraocular lens. Near full aberration correction was achieved with the doublet intraocular lens. The modulation transfer function and Strehl ratio were superior for the doublet lens. Through-focus calculations were also conducted showing better optical quality for the doublet. Real higher-order aberrations from normal eyes were incorporated in the model to evaluate the effect on the doublet intraocular lens performance. Results showed that the doublet lens preserved its benefits under realistic conditions. This doublet intraocular lens should provide patients with a better quality of vision after it is further developed in terms of manufacturing and surgical limitations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visual effect of the combined correction of spherical and longitudinal chromatic aberrations

Pablo Artal, Silvestre Manzanera, Patricia Piers, and Henk Weeber
Opt. Express 18(2) 1637-1648 (2010)

Customized eye models for determining optimized intraocular lenses power

Carmen Canovas and Pablo Artal
Biomed. Opt. Express 2(6) 1649-1662 (2011)

Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Cooke and T. L. Cooke, “Comparison of 9 intraocular lens power calculation formulas,” J. Cataract Refract. Surg. 42(8), 1157–1164 (2016).
    [Crossref] [PubMed]
  2. K. J. Hoffer, “The Hoffer Q formula: A comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
    [Crossref] [PubMed]
  3. J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
    [Crossref] [PubMed]
  4. D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
    [Crossref] [PubMed]
  5. G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
    [Crossref] [PubMed]
  6. H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11 (2007).
    [Crossref] [PubMed]
  7. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
    [Crossref] [PubMed]
  8. L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
    [Crossref] [PubMed]
  9. A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref] [PubMed]
  10. H. B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16(1), 8–26 (2005).
    [Crossref] [PubMed]
  11. R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
    [Crossref] [PubMed]
  12. I. G. Pallikaris, G. A. Kontadakis, and D. M. Portaliou, “Real and pseudoaccommodation in accommodative lenses,” J. Ophthalmol. 2011, 284961 (2011).
    [Crossref] [PubMed]
  13. O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
    [Crossref] [PubMed]
  14. S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
    [Crossref] [PubMed]
  15. W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
    [Crossref] [PubMed]
  16. E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
    [Crossref] [PubMed]
  17. P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refract. Surg. 35(6), 962–963, author reply 963–964 (2009).
    [Crossref] [PubMed]
  18. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
    [Crossref] [PubMed]
  19. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
    [Crossref] [PubMed]
  20. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
    [Crossref] [PubMed]
  21. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
    [Crossref] [PubMed]
  22. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
    [Crossref] [PubMed]
  23. H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
    [Crossref] [PubMed]
  24. C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
    [Crossref] [PubMed]
  25. S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
    [Crossref] [PubMed]
  26. B. Cochener and Concerto Study Group, “Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study,” J. Cataract Refract. Surg. 42(9), 1268–1275 (2016).
    [Crossref] [PubMed]
  27. N. E. de Vries and R. M. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
    [Crossref] [PubMed]
  28. F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
    [Crossref] [PubMed]
  29. K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
    [Crossref] [PubMed]
  30. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [Crossref] [PubMed]
  31. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
    [Crossref] [PubMed]
  32. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  33. G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
    [Crossref] [PubMed]
  34. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
    [Crossref] [PubMed]
  35. K. Ohnuma, H. Kayanuma, T. Lawu, K. Negishi, T. Yamaguchi, and T. Noda, “Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations,” Biomed. Opt. Express 2(6), 1443–1457 (2011).
    [Crossref] [PubMed]

2016 (4)

D. L. Cooke and T. L. Cooke, “Comparison of 9 intraocular lens power calculation formulas,” J. Cataract Refract. Surg. 42(8), 1157–1164 (2016).
[Crossref] [PubMed]

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

B. Cochener and Concerto Study Group, “Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study,” J. Cataract Refract. Surg. 42(9), 1268–1275 (2016).
[Crossref] [PubMed]

2015 (1)

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

2014 (5)

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

2013 (1)

N. E. de Vries and R. M. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

2012 (1)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refract. Surg. 35(6), 962–963, author reply 963–964 (2009).
[Crossref] [PubMed]

2007 (4)

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11 (2007).
[Crossref] [PubMed]

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

2006 (1)

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

2002 (2)

2001 (1)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

1997 (1)

1993 (1)

K. J. Hoffer, “The Hoffer Q formula: A comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[Crossref] [PubMed]

1990 (1)

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[Crossref] [PubMed]

1989 (1)

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

1988 (1)

D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
[Crossref] [PubMed]

Alba-Bueno, F.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Alió, J. L.

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

Artal, P.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refract. Surg. 35(6), 962–963, author reply 963–964 (2009).
[Crossref] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

Atchison, D. A.

Benito, A.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

Benny, Y.

Berrio, E.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

Birkenfeld, J.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Bissen-Miyajima, H.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Bradley, A.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

Brennan, N. A.

Buil, J. A.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Cánovas, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Charman, W. N.

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11 (2007).
[Crossref] [PubMed]

Cochener, B.

B. Cochener and Concerto Study Group, “Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study,” J. Cataract Refract. Surg. 42(9), 1268–1275 (2016).
[Crossref] [PubMed]

Cooke, D. L.

D. L. Cooke and T. L. Cooke, “Comparison of 9 intraocular lens power calculation formulas,” J. Cataract Refract. Surg. 42(8), 1157–1164 (2016).
[Crossref] [PubMed]

Cooke, T. L.

D. L. Cooke and T. L. Cooke, “Comparison of 9 intraocular lens power calculation formulas,” J. Cataract Refract. Surg. 42(8), 1157–1164 (2016).
[Crossref] [PubMed]

Croft, M. A.

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

Davies, L. N.

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

de Vries, N. E.

N. E. de Vries and R. M. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

Dell, S.

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

Dick, H. B.

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

H. B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16(1), 8–26 (2005).
[Crossref] [PubMed]

Durán, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Escudero-Sanz, I.

Fernandez, E. J.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Fernández, E. J.

Findl, O.

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Gil, M. A.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Glasser, A.

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

Hayashi, K.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Heron, G.

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

Hoffer, K. J.

K. J. Hoffer, “The Hoffer Q formula: A comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Kamiya, K.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Kayanuma, H.

Kontadakis, G. A.

I. G. Pallikaris, G. A. Kontadakis, and D. M. Portaliou, “Real and pseudoaccommodation in accommodative lenses,” J. Ophthalmol. 2011, 284961 (2011).
[Crossref] [PubMed]

Kraff, M. C.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[Crossref] [PubMed]

D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
[Crossref] [PubMed]

Kriechbaum, K.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Lawu, T.

Leydolt, C.

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

Leydolt-Koeppl, Ch.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Liou, H. L.

Manzanera, S.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Marcos, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Menapace, R.

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Millán, M. S.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Navarro, R.

Negishi, K.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

K. Ohnuma, H. Kayanuma, T. Lawu, K. Negishi, T. Yamaguchi, and T. Noda, “Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations,” Biomed. Opt. Express 2(6), 1443–1457 (2011).
[Crossref] [PubMed]

Noda, T.

Norrby, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Nuijts, R. M.

N. E. de Vries and R. M. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

Ohnuma, K.

Ortiz, S.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Pallikaris, I. G.

I. G. Pallikaris, G. A. Kontadakis, and D. M. Portaliou, “Real and pseudoaccommodation in accommodative lenses,” J. Ophthalmol. 2011, 284961 (2011).
[Crossref] [PubMed]

Papas, E.

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

Pérez-Merino, P.

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Piers, P.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

Piers, P. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

Portaliou, D. M.

I. G. Pallikaris, G. A. Kontadakis, and D. M. Portaliou, “Real and pseudoaccommodation in accommodative lenses,” J. Ophthalmol. 2011, 284961 (2011).
[Crossref] [PubMed]

Prieto, P. M.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538–1544 (2007).
[Crossref] [PubMed]

Radhakrishnan, H.

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11 (2007).
[Crossref] [PubMed]

Ravikumar, S.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

Redondo, M.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

Retzlaff, J.

D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
[Crossref] [PubMed]

Retzlaff, J. A.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[Crossref] [PubMed]

Ribak, E. N.

Rosen, E.

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

Sanders, D. R.

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[Crossref] [PubMed]

D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
[Crossref] [PubMed]

Sato, M.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Shimizu, K.

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Slade, S.

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

Smith, G.

Tabernero, J.

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

Thibos, L. N.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

Varón, C.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Vega, F.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Weeber, H.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010).
[Crossref] [PubMed]

Weeber, H. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Williams, D. R.

G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

Winn, B.

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

Yamaguchi, T.

Yoon, G.-Y.

Am. J. Ophthalmol. (1)

K. Kamiya, K. Hayashi, K. Shimizu, K. Negishi, M. Sato, H. Bissen-Miyajima, and Survey Working Group of the Japanese Society of Cataract and Refractive Surgery, “Multifocal intraocular lens explantation: a case series of 50 eyes,” Am. J. Ophthalmol. 158(2), 215–220.e1 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Curr. Opin. Ophthalmol. (1)

H. B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16(1), 8–26 (2005).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

R. Menapace, O. Findl, K. Kriechbaum, and Ch. Leydolt-Koeppl, “Accommodating intraocular lenses: a critical review of present and future concepts,” Graefes Arch. Clin. Exp. Ophthalmol. 245(4), 473–489 (2007).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and through-focus performance of four diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref] [PubMed]

J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (10)

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

B. Cochener and Concerto Study Group, “Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study,” J. Cataract Refract. Surg. 42(9), 1268–1275 (2016).
[Crossref] [PubMed]

N. E. de Vries and R. M. Nuijts, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

D. L. Cooke and T. L. Cooke, “Comparison of 9 intraocular lens power calculation formulas,” J. Cataract Refract. Surg. 42(8), 1157–1164 (2016).
[Crossref] [PubMed]

K. J. Hoffer, “The Hoffer Q formula: A comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993).
[Crossref] [PubMed]

J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990).
[Crossref] [PubMed]

D. R. Sanders, J. Retzlaff, and M. C. Kraff, “Comparison of the SRK II formula and other second generation formulas,” J. Cataract Refract. Surg. 14(2), 136–141 (1988).
[Crossref] [PubMed]

O. Findl and C. Leydolt, “Meta-analysis of accommodating intraocular lenses,” J. Cataract Refract. Surg. 33(3), 522–527 (2007).
[Crossref] [PubMed]

E. Rosen, J. L. Alió, H. B. Dick, S. Dell, and S. Slade, “Efficacy and safety of multifocal intraocular lenses following cataract and refractive lens exchange: Metaanalysis of peer-reviewed publications,” J. Cataract Refract. Surg. 42(2), 310–328 (2016).
[Crossref] [PubMed]

P. Artal, “History of IOLs that correct spherical aberration,” J. Cataract Refract. Surg. 35(6), 962–963, author reply 963–964 (2009).
[Crossref] [PubMed]

J. Ophthalmol. (1)

I. G. Pallikaris, G. A. Kontadakis, and D. M. Portaliou, “Real and pseudoaccommodation in accommodative lenses,” J. Ophthalmol. 2011, 284961 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (7)

J. Refract. Surg. (1)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

J. Vis. (3)

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1 (2001).
[Crossref] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11 (2007).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

W. N. Charman, “Developments in the correction of presbyopia II: surgical approaches,” Ophthalmic Physiol. Opt. 34(4), 397–426 (2014).
[Crossref] [PubMed]

L. N. Davies, M. A. Croft, E. Papas, and W. N. Charman, “Presbyopia: physiology, prevention and pathways to correction,” Ophthalmic Physiol. Opt. 36(1), 1–4 (2016).
[Crossref] [PubMed]

G. Heron and B. Winn, “Binocular accommodation reaction and response times for normal observers,” Ophthalmic Physiol. Opt. 9(2), 176–183 (1989).
[Crossref] [PubMed]

Ophthalmology (1)

S. Marcos, S. Ortiz, P. Pérez-Merino, J. Birkenfeld, S. Durán, and I. Jiménez-Alfaro, “Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo,” Ophthalmology 121(1), 45–55 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Vision Res. (1)

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Chromatic focal shift for the natural eye (dashed line), eye implanted with the doublet IOL (blue line), and eye implanted with the BA-IOL (red line).

Fig. 2
Fig. 2

(A) PSFs obtained for a pupil of 4 mm of diameter in the pseudophakic eye model implanted with the doublet IOL (left column), and the BA-IOL (right column). PSFs were calculated at the eccentricities 0, 5 and 10 deg. (B) Radial averages of the polychromatic MTFs for the entrance pupil of 4 mm corresponding to the eye model with the doublet IOL (solid lines), and with the BA-IOL (dashed lines).

Fig. 3
Fig. 3

Radial averages of the MTFs through focus for different spatial frequencies (3, 6, 12 and 18 c/deg; blue, red, green and purple lines respectively), in the pseudophakic eye implanted with the doublet IOL (A); and with the BA-IOL (B). Pupil size was 4 mm of diameter in all cases.

Fig. 4
Fig. 4

Radial averages of the polychromatic MTFs for retinal eccentricities 0, 5 and 10 c/deg (in blue, red and green color, respectively) for the eye implanted with the doublet IOL (solid lines) and the BA-IOL (dashed lines) in subject 1 (panel A) and 2 (panel B).

Fig. 5
Fig. 5

Radial averages of the geometrical MTFs through focus for different spatial frequencies (3, 6, 12 and 18 c/deg in blue, red, green and purple color, respectively), in the pseudophakic eye implanted with the doublet IOL (solid curves), and with the BA-IOL (dashed curves). Each panel corresponds to a different subject. Pupil size was 4 mm of diameter in all cases.

Tables (2)

Metrics