Abstract

In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for in vivo human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and in vivo from human research volunteers are presented.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

1 June 2017: A typographical correction was made to the title.


OSA Recommended Articles
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

Kevin S. K. Wong, Yifan Jian, Michelle Cua, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 6(2) 580-590 (2015)

Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice

Daniel J. Wahl, Yifan Jian, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 7(1) 1-12 (2016)

Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

Robert J. Zawadzki, Steven M. Jones, Suman Pilli, Sandra Balderas-Mata, Dae Yu Kim, Scot S. Olivier, and John S. Werner
Biomed. Opt. Express 2(6) 1674-1686 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31, 1821–1823 (2006).
    [Crossref] [PubMed]
  3. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
    [Crossref] [PubMed]
  4. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
    [Crossref] [PubMed]
  5. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51, 1379–1396 (2011).
    [Crossref] [PubMed]
  6. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).
    [Crossref] [PubMed]
  7. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [Crossref] [PubMed]
  8. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
    [Crossref] [PubMed]
  9. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009).
    [Crossref] [PubMed]
  10. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18, 8515–8527 (2010).
    [Crossref] [PubMed]
  11. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2, 748–763 (2011).
    [Crossref] [PubMed]
  12. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
    [Crossref] [PubMed]
  13. Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 5, 3059–3073 (2014).
    [Crossref] [PubMed]
  14. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002).
    [Crossref]
  15. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [Crossref]
  16. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939–941 (2006).
    [Crossref] [PubMed]
  17. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
    [Crossref] [PubMed]
  18. H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23, 24587–24601 (2015).
    [Crossref] [PubMed]
  19. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19, 14160–14171 (2011).
    [Crossref] [PubMed]
  20. D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1–12 (2016).
    [Crossref] [PubMed]
  21. M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).
  22. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38, 4801–4804 (2013).
    [Crossref] [PubMed]
  23. H. R. G. W. Verstraete, B. Cense, R. Bilderbeek, M. Verhaegen, and J. Kalkman, “Towards model-based adaptive optics optical coherence tomography,” Opt. Express 22, 32406–32418 (2014).
    [Crossref]
  24. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
    [Crossref] [PubMed]
  25. S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931–21941 (2015).
    [Crossref] [PubMed]
  26. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
    [Crossref]
  27. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
    [Crossref] [PubMed]
  28. Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
    [Crossref]
  29. H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less wavefront aberration correction in optical coherence tomography,” Opt. Lett. 40, 5722–5725 (2015).
    [Crossref] [PubMed]
  30. A. Gullstrand, “Appendix 2,” in “Handbuch der Physiologischen Optik”, H. Von Helmholtz, ed. (Opt. Soc. Am.1924, pp. 3513rd ed.
  31. Y. Le Grand and S. G. El Hage, “Physiological optics,” Springer Ser. Opt. Sci.Springer Berlin Heidelberg (1980).
  32. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
    [Crossref]
  33. M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.
  34. Q. Yang, C. Ftaclas, M. Chun, and D. Toomey, “Hysteresis correction in the curvature adaptive optics system,” J. Opt. Soc. Am. A 22, 142–147 (2005).
    [Crossref]
  35. A. Dubra, J. Massa, and C. Paterson, “Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors,” Opt. Express 13, 9062–9070 (2005).
    [Crossref] [PubMed]
  36. Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
    [Crossref]
  37. R. K. Tyson, Principles of adaptive optics (CRC press, 2015).
  38. L. Bliek, H. R. G. W. Verstraete, M. Verhaegen, and S. Wahls, “Online optimization with costly and noisy measurements using random Fourier expansions,” arXiv:1603.09620v2 [cs.LG] (2016).
  39. A. H. Sayed and T. Kailath, “Recursive least-squares adaptive filters,” Digit. Signal Process. Handbook pp. 21 (1998).
  40. M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
    [Crossref]
  41. R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
    [Crossref] [PubMed]
  42. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
    [Crossref] [PubMed]
  43. J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).
    [Crossref]
  44. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous slo/oct imaging of the human retina with axial eye motion correction,” Opt. Express 15, 16922–16932 (2007).
    [Crossref] [PubMed]
  45. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2611–2622 (2012).
    [Crossref] [PubMed]
  46. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
    [Crossref] [PubMed]
  47. D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, C. J. Sheppard, and M. Verhaegen, “Pupil filters for extending the field-of-view in light-sheet microscopy,” Opt. Lett. 41, 1205–1208 (2016).
    [Crossref] [PubMed]

2016 (3)

2015 (5)

2014 (4)

2013 (4)

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38, 4801–4804 (2013).
[Crossref] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
[Crossref]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
[Crossref]

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

2012 (2)

2011 (5)

2010 (2)

2009 (2)

2008 (1)

2007 (1)

2006 (4)

2005 (4)

2003 (1)

2002 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Adler, J.

Antonello, J.

Arathorn, D. W.

Baumann, B.

Biedermann, B. R.

Bilderbeek, R.

Bliek, L.

L. Bliek, H. R. G. W. Verstraete, M. Verhaegen, and S. Wahls, “Online optimization with costly and noisy measurements using random Fourier expansions,” arXiv:1603.09620v2 [cs.LG] (2016).

Bonora, S.

Booth, M. J.

Botcherby, E. J.

Bower, B. A.

Brown, J. M.

Buscher, D. F.

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

Cable, A.

Cense, B.

Chang, M. P.

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Choi, S.

Chun, M.

Cua, M.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
[Crossref] [PubMed]

de Boer, J. F.

de Kinkelder, R.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

Débarre, D.

Derby, J. C.

Ding, W.

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Dobre, G.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Dubra, A.

Dunlop, C. N.

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

Eigenwillig, C. M.

El Hage, S. G.

Y. Le Grand and S. G. El Hage, “Physiological optics,” Springer Ser. Opt. Sci.Springer Berlin Heidelberg (1980).

Faber, D. J.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

Fatikow, S.

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Felberer, F.

Fienup, J. R.

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fraanje, R.

Ftaclas, C.

Fujimoto, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gao, W.

Gerritsen, H. C.

Gorczynska, I.

Götzinger, E.

Gradowski, M. A.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gullstrand, A.

A. Gullstrand, “Appendix 2,” in “Handbuch der Physiologischen Optik”, H. Von Helmholtz, ed. (Opt. Soc. Am.1924, pp. 3513rd ed.

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Heisler, M.

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Herde, A. E.

Hitzenberger, C. K.

Hofer, H.

Hojjatoleslami, S.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Izatt, J. A.

Jian, Y.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1–12 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
[Crossref] [PubMed]

S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931–21941 (2015).
[Crossref] [PubMed]

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
[Crossref] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
[Crossref]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
[Crossref]

Jiang, J.

Jones, S.

Jones, S. M.

Jonnal, R. S.

Ju, M.

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Ju, M. J.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

Kailath, T.

A. H. Sayed and T. Kailath, “Recursive least-squares adaptive filters,” Digit. Signal Process. Handbook pp. 21 (1998).

Kalkman, J.

Keller, C. U.

Klein, T.

Kocaoglu, O. P.

Kok, P. H.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

Koperda, E.

Kroisamer, J.-S.

Kurokawa, K.

Laut, S.

Le Grand, Y.

Y. Le Grand and S. G. El Hage, “Physiological optics,” Springer Ser. Opt. Sci.Springer Berlin Heidelberg (1980).

Lee, S.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2, 748–763 (2011).
[Crossref] [PubMed]

Leitgeb, R. A.

Li, C.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lipson, S. G.

Mackenzie, P. J.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

Makita, S.

Massa, J.

Meadway, A.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Miao, D.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

Miller, D. T.

Miller, J. J.

Nasiri-Avanaki, M.-R.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Olivier, S.

Olivier, S. S.

Paterson, C.

Paun, H.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Pircher, M.

Podoleanu, A.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Porter, J.

Potsaid, B.

Pozzi, P.

Pugh, E. N.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Qin, Y.

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Queener, H.

Rha, J.

Ribak, E. N.

Robinson, D. J.

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

Roorda, A.

Sarunic, M.

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Sarunic, M. V.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1–12 (2016).
[Crossref] [PubMed]

S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931–21941 (2015).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
[Crossref] [PubMed]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
[Crossref]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
[Crossref]

Sasaki, K.

Sattmann, H.

Sayed, A. H.

A. H. Sayed and T. Kailath, “Recursive least-squares adaptive filters,” Digit. Signal Process. Handbook pp. 21 (1998).

Schmidt-Erfurth, U.

Schraa, O.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sheehy, C. K.

Sheppard, C. J.

Shirinzadeh, B.

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Soloviev, O.

Sredar, N.

Srinivas, S.

Srinivasan, V. J.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sulai, Y. N.

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tian, Y.

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Tiruveedhula, P.

Toomey, D.

Tuohy, S.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

Tyson, R. K.

R. K. Tyson, Principles of adaptive optics (CRC press, 2015).

van Leeuwen, T. G.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

van Werkhoven, T.

Vdovin, G.

Verbraak, F. D.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

Verhaegen, M.

Verstraete, H. R. G. W.

Vorontsov, M. A.

Wahl, D. J.

Wahls, S.

H. R. G. W. Verstraete, S. Wahls, J. Kalkman, and M. Verhaegen, “Model-based sensor-less wavefront aberration correction in optical coherence tomography,” Opt. Lett. 40, 5722–5725 (2015).
[Crossref] [PubMed]

L. Bliek, H. R. G. W. Verstraete, M. Verhaegen, and S. Wahls, “Online optimization with costly and noisy measurements using random Fourier expansions,” arXiv:1603.09620v2 [cs.LG] (2016).

Wang, Q.

Watanabe, T.

Werner, J. S.

Wieser, W.

Wilding, D.

Williams, D. R.

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51, 1379–1396 (2011).
[Crossref] [PubMed]

Wilson, T.

Wong, K.

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
[Crossref]

Wong, K. S. K.

Xu, J.

Yamanari, M.

Yang, H.

Yang, Q.

Yasuno, Y.

Zadrozny, A.

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

Zam, A.

Zawadzki, R.

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Zawadzki, R. J.

D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1–12 (2016).
[Crossref] [PubMed]

S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931–21941 (2015).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
[Crossref] [PubMed]

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38, 4801–4804 (2013).
[Crossref] [PubMed]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
[Crossref]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[Crossref] [PubMed]

Zhang, D.

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Zhang, P.

Zhang, Y.

Zhao, M.

Zommer, S.

Zotter, S.

Biomed. Opt. Express (7)

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2, 748–763 (2011).
[Crossref] [PubMed]

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
[Crossref] [PubMed]

Y. N. Sulai and A. Dubra, “Non-common path aberration correction in an adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 5, 3059–3073 (2014).
[Crossref] [PubMed]

D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1–12 (2016).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6, 580–590 (2015).
[Crossref] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3, 2611–2622 (2012).
[Crossref] [PubMed]

IEEE/ASME Trans. Mechatronics (1)

Y. Qin, Y. Tian, D. Zhang, B. Shirinzadeh, and S. Fatikow, “A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications,” IEEE/ASME Trans. Mechatronics 18, 981–989 (2013).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Vis. Sci. 52, 3908–3913 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18, 056007 (2013).
[Crossref]

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21, 026007 (2016).
[Crossref]

J. of Biomed. Opt. (1)

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. of Biomed. Opt. 18, 026002 (2013).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Express (15)

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous slo/oct imaging of the human retina with axial eye motion correction,” Opt. Express 15, 16922–16932 (2007).
[Crossref] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[Crossref] [PubMed]

M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
[Crossref] [PubMed]

H. Yang, O. Soloviev, and M. Verhaegen, “Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects,” Opt. Express 23, 24587–24601 (2015).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19, 14160–14171 (2011).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18, 13935–13944 (2010).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[Crossref] [PubMed]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009).
[Crossref] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18, 8515–8527 (2010).
[Crossref] [PubMed]

A. Dubra, J. Massa, and C. Paterson, “Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors,” Opt. Express 13, 9062–9070 (2005).
[Crossref] [PubMed]

S. Bonora, Y. Jian, P. Zhang, A. Zam, E. N. Pugh, R. J. Zawadzki, and M. V. Sarunic, “Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens,” Opt. Express 23, 21931–21941 (2015).
[Crossref] [PubMed]

H. R. G. W. Verstraete, B. Cense, R. Bilderbeek, M. Verhaegen, and J. Kalkman, “Towards model-based adaptive optics optical coherence tomography,” Opt. Express 22, 32406–32418 (2014).
[Crossref]

Opt. Lett. (6)

Sci. Rep. (1)

Y. Jian, S. Lee, M. Ju, M. Heisler, W. Ding, R. Zawadzki, S. Bonora, and M. Sarunic, “Lens-based wavefront sensorless adaptive optics swept source OCT,” Sci. Rep. 6, 27620 (2015).
[Crossref]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Vision Res. (1)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51, 1379–1396 (2011).
[Crossref] [PubMed]

Other (7)

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” Proceedings of Mathematical Methods and Applied Computing, WSEAS pp. 669–674 (2009).

A. Gullstrand, “Appendix 2,” in “Handbuch der Physiologischen Optik”, H. Von Helmholtz, ed. (Opt. Soc. Am.1924, pp. 3513rd ed.

Y. Le Grand and S. G. El Hage, “Physiological optics,” Springer Ser. Opt. Sci.Springer Berlin Heidelberg (1980).

M. P. Chang, A. Zadrozny, D. F. Buscher, C. N. Dunlop, and D. J. Robinson, “Hysteresis correction of a piezoelectrically actuated segmented mirror,” in “Astronomical Telescopes & Instrumentation,” (International Society for Optics and Photonics, 1998), pp. 864–871.

R. K. Tyson, Principles of adaptive optics (CRC press, 2015).

L. Bliek, H. R. G. W. Verstraete, M. Verhaegen, and S. Wahls, “Online optimization with costly and noisy measurements using random Fourier expansions,” arXiv:1603.09620v2 [cs.LG] (2016).

A. H. Sayed and T. Kailath, “Recursive least-squares adaptive filters,” Digit. Signal Process. Handbook pp. 21 (1998).

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (618 KB)      Measurements of the Zernike modes generated by the MAL while running the CS algorithm.
» Visualization 2: AVI (5561 KB)      En face images extracted from the OCT volumes acquired during the optimization process for CS and DONE.
» Visualization 3: AVI (7538 KB)      Fly-through of a WFSL-AO OCT retina volume.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of optimization with DONE. The unknown function f (x) is approximated by the random cosine model g(x) with ten noisy measurements. The minimum of g(x) is found and approximates the minimum of f (x).

Fig. 2
Fig. 2

(a) Zemax 3D simulation of the lens-based sample arm. (b) Spot diagram for three wavelengths spanning the 80 nm bandwidth of the light source (green, 1020 nm; blue, 1060 nm; red, 1100 nm). The eye was modeled as a paraxial lens with 16 mm focal length in air. VL, location of variable focus lens; GM, galvo scanning mirrors. Lenses: f c , 37.5mm; f1, 200mm; f2, 50mm; f3, 50mm; f4, 50mm; f5, 100mm; f6, 200mm.

Fig. 3
Fig. 3

Hysteresis curve of piezoelectric actuator measured by Shack-Hartmann wavefront sensor before and after linearization.

Fig. 4
Fig. 4

Comparison of Coordinate Search (CS) and DONE optimization on a stationary sample. (a) Unoptimized and final images of the phantom after aberration correction with the CS and DONE algorithms. (b) Merit function versus iteration for CS and DONE.

Fig. 5
Fig. 5

The top row shows the OCT en face image of human photoreceptors before and after optimization using 70 iterations of DONE. The bottom row shows the corresponding B-scans at the location shown in yellow on the en face image. All scale bars are 100 μm. The optimized Zernike coefficients (in μm): Defocus, −0.94; Oblique Astigmatism, 0.53; Vertical Astigmatism, −0.069; Vertical Coma, 0.40; Horizontal Coma, 0.40.

Fig. 6
Fig. 6

Values of the metric function during the optimization with the DONE algorithm.

Fig. 7
Fig. 7

OCT en face image of human photoreceptor starting before and after optimization with 70 iterations of DONE. All scale bars are 100 μm. The optimized Zernike coefficients (in μm): Defocus, 0.25; Oblique Astigmatism, −0.16; Vertical Astigmatism, −0.49; Vertical Coma, −0.059; Horizontal Coma, −0.11.

Fig. 8
Fig. 8

Mosaicked images of the retina acquired across a retina in a single imaging session. The position on the retina was controlled by asking the subject to fixate on different calibrated points in the visual field.

Tables (1)

Tables Icon

Table 1 Parameter values for the DONE algorithm (wavefront aberrations in μm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H r [ S ( u ¯ ) ] ( t ) = max { S ( u ¯ ( t ) ) r , min { S ( u ¯ ( t ) ) + r , H r [ S ( u ¯ ) ] ( t T ) } } ,
ϕ ¯ 1 ( u ¯ ( t ) ) = i = 1 n w i H r i [ S ( u ¯ ) ] ( t ) .
[ 1 a n T P n 1 1 / 2 0 P n 1 1 / 2 ] Θ n = [ γ n 1 / 2 0 g n γ n 1 / 2 P n 1 / 2 ] .
c n = c n 1 + g n ( y n a n T c n 1 ) .

Metrics