Abstract

Reflection artifacts caused by acoustic inhomogeneities constitute a major problem in epi-mode biomedical photoacoustic imaging. Photoacoustic transients from the skin and superficial optical absorbers traverse into the tissue and reflect off echogenic structures to generate reflection artifacts. These artifacts cause difficulties in the interpretation of images and reduce contrast and imaging depth. We recently developed a method called PAFUSion (photoacoustic-guided focused ultrasound) to circumvent the problem of reflection artifacts in photoacoustic imaging. We already demonstrated that the photoacoustic signals can be backpropagated using synthetic aperture pulse-echo data for identifying and reducing reflection artifacts in vivo. In this work, we propose an alternative variant of PAFUSion in which synthetic backpropagation of photoacoustic signals is based on multi-angled plane-wave ultrasound measurements. We implemented plane-wave and synthetic aperture PAFUSion in a handheld ultrasound/photoacoustic imaging system and demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on a human finger using both approaches. Our results suggest that, while both approaches are equivalent in terms of artifact reduction efficiency, plane-wave PAFUSion requires less pulse echo acquisitions when the skin absorption is the main cause of reflection artifacts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 7(8) 2955-2972 (2016)

Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition

Emma R. Hill, Wenfeng Xia, Matthew J. Clarkson, and Adrien E. Desjardins
Biomed. Opt. Express 8(1) 68-77 (2017)

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
    [Crossref] [PubMed]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  3. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  4. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
    [Crossref] [PubMed]
  5. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [Crossref] [PubMed]
  6. P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
    [Crossref] [PubMed]
  7. X. L. Dean-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography,” Nat. Light Sci. Appl. 3(1), 137 (2014).
    [Crossref]
  8. A. Hussain, W. Petersen, J. Staley, E. Hondebrink, and W. Steenbergen, “Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics,” Opt. Lett. 41(8), 1720–1723 (2016).
    [Crossref] [PubMed]
  9. M. Kuniyil Ajith Singh, W. Steenbergen, and S. Manohar, “Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging,” Frontiers in Biophotonics for Translational Medicine, Springer Singapore 209–247 (2016).
  10. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
    [Crossref] [PubMed]
  11. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
    [Crossref] [PubMed]
  12. M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
    [Crossref]
  13. M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
    [Crossref] [PubMed]
  14. H. M. Schwab, M. F. Beckmann, and G. Schmitz, “Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements,” Biomed. Opt. Express 7(4), 1468–1478 (2016).
    [Crossref] [PubMed]
  15. E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic Clutter Reduction Using Short-Lag Spatial Coherence Weighted Imaging,” In proceedings of IEEE International Ultrasonics Symposium (IUS, 2014), pp. 41–44.
    [Crossref]
  16. X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
    [Crossref] [PubMed]
  17. K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
    [Crossref]
  18. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [Crossref] [PubMed]
  19. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
    [Crossref]
  20. M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
    [Crossref] [PubMed]
  21. W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
    [Crossref] [PubMed]
  22. M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
    [Crossref] [PubMed]
  23. G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
    [Crossref] [PubMed]
  24. S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
    [Crossref]

2016 (8)

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

A. Hussain, W. Petersen, J. Staley, E. Hondebrink, and W. Steenbergen, “Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics,” Opt. Lett. 41(8), 1720–1723 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

H. M. Schwab, M. F. Beckmann, and G. Schmitz, “Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements,” Biomed. Opt. Express 7(4), 1468–1478 (2016).
[Crossref] [PubMed]

K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
[Crossref]

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

2015 (2)

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

2014 (5)

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

X. L. Dean-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography,” Nat. Light Sci. Appl. 3(1), 137 (2014).
[Crossref]

2013 (1)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

2012 (2)

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

2011 (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

2010 (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

2009 (1)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

2007 (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Akarçay, H. G.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

Bamber, J.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Beard, P. C.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Beckmann, M. F.

Bernelot Moens, H. J.

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

Biswas, S. K.

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

Boctor, E. M.

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

Brands, P.

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Daoudi, K.

David, A. L.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Dean-Ben, X. L.

X. L. Dean-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography,” Nat. Light Sci. Appl. 3(1), 137 (2014).
[Crossref]

Deán-Ben, X. L.

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

Desjardins, A. E.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Frenz, M.

M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Gertsch, A.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Harris-Birtill, D.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Heijblom, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Held, G.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

Hendriksen, E.

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

Hondebrink, E.

Hussain, A.

Jaeger, M.

M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Kang, J. U.

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Kitz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Klaase, J. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Kohl, A.

Kuniyil Ajith Singh, M.

M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

Kuo, N. P.

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Lediju Bell, M. A.

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Manohar, S.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

Mari, J. M.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Nikitichev, D. I.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Ntziachristos, V.

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

O’Flynn, E.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Ourselin, S.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Parameshwarappa, V.

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

Peeters, S.

Petersen, W.

Piras, D.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Pratt, R.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Preisser, S.

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

G. Held, S. Preisser, H. G. Akarçay, S. Peeters, M. Frenz, and M. Jaeger, “Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers,” Biomed. Opt. Express 5(11), 3765–3780 (2014).
[Crossref] [PubMed]

Rabot, O.

Razansky, D.

X. L. Dean-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography,” Nat. Light Sci. Appl. 3(1), 137 (2014).
[Crossref]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

Schmitz, G.

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Schwab, H. M.

Song, D. Y.

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

Staley, J.

Steenbergen, W.

A. Hussain, W. Petersen, J. Staley, E. Hondebrink, and W. Steenbergen, “Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics,” Opt. Lett. 41(8), 1720–1723 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

Thorbecke, J.

K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
[Crossref]

Tisserand, S.

van den Berg, P. J.

van den Engh, F. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van der Neut, J.

K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
[Crossref]

van der Schaaf, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van Es, P.

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

Wang, L. V.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

Wapenaar, K.

K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
[Crossref]

West, S. J.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Xia, W.

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

Yao, J.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Eur. Radiol. (1)

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Geophys. J. Int. (1)

K. Wapenaar, J. Thorbecke, and J. van der Neut, “A single-sided homogeneous Green’s function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green’s function retrieval,” Geophys. J. Int. 205(1), 531–535 (2016).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Inverse Probl. (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (8)

M. A. Lediju Bell, N. P. Kuo, D. Y. Song, J. U. Kang, and E. M. Boctor, “In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).
[Crossref] [PubMed]

W. Xia, D. I. Nikitichev, J. M. Mari, S. J. West, R. Pratt, A. L. David, S. Ourselin, P. C. Beard, and A. E. Desjardins, “Performance characteristics of an interventional multispectral photoacoustic imaging system for guiding minimally invasive procedures,” J. Biomed. Opt. 20(8), 086005 (2015).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

P. van Es, S. K. Biswas, H. J. Bernelot Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

J. Opt. (1)

S. Preisser, G. Held, H. G. Akarçay, M. Jaeger, and M. Frenz, “Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms,” J. Opt. 18(9), 094003 (2016).
[Crossref]

Nat. Light Sci. Appl. (1)

X. L. Dean-Ben and D. Razansky, “Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography,” Nat. Light Sci. Appl. 3(1), 137 (2014).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photoacoustics (2)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Kuniyil Ajith Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

Other (2)

E. J. Alles, M. Jaeger, and J. C. Bamber, “Photoacoustic Clutter Reduction Using Short-Lag Spatial Coherence Weighted Imaging,” In proceedings of IEEE International Ultrasonics Symposium (IUS, 2014), pp. 41–44.
[Crossref]

M. Kuniyil Ajith Singh, W. Steenbergen, and S. Manohar, “Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging,” Frontiers in Biophotonics for Translational Medicine, Springer Singapore 209–247 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Illustration of inward (Pi propagating into the tissue) and outward-propagating (PO propagating towards the probe) PA transients, generated by optical absorption in the skin melanin layer. (b) Time-inversion and backpropagation of the PA signal from interval t = [0, T] towards mimicking the PA wavefield Pi* traversing into the tissue and identification of resulting echoes. Alternative to physical backpropagation, synthetic backpropagation can be based on reference pulse-echo data that is acquired with (c) element-by-element US transmissions (like in synthetic aperture imaging), or (d) transmission of plane-waves (PA) with multiple angles.

Fig. 2
Fig. 2

Illustration of the commercial US system showing a real-time reconstructed PA image of a human finger (left) and the hybrid probe (right) integrating the laser module and the US transducer array (US probe is optically shielded with gold foil).

Fig. 3
Fig. 3

(a) Schematic of the phantom and orientation of the US/PA probe, (b) Illustration of the in vivo measurement setup in which the imaging plane, cross-section of imaging plane with finger, water spacing between finger and probe, and the path of the optical beam are shown.

Fig. 4
Fig. 4

Phantom experiment results: (a) PA image with several features marked (a1 – a6), (b) US image.

Fig. 5
Fig. 5

Plane-wave PAFUSion to identify and reduce reflection artifacts in the phantom experiment: (a) PAFUSion image, and corrected PA images where the PAFUSion image was subtracted after matching amplitude and phase at the locations of the features a3 (b), a5 (c) and a6 (d).

Fig. 6
Fig. 6

Synthetic aperture PAFUSion to identify and reduce reflection artifacts in the phantom experiment: (a) PAFUSion image, and corrected PA images where the PAFUSion image was subtracted after matching amplitude and phase at the location of the feature a3 (b), a5 (c) and a6 (d).

Fig. 7
Fig. 7

In vivo experiment results: (a) PA image, (b) US image, (c) PA image with several features marked (a1 – a9).

Fig. 8
Fig. 8

Plane-wave PAFUSion to identify and reduce reflection artifacts in the in vivo measurement: (a) PAFUSion image, (b) corrected PA image.

Fig. 9
Fig. 9

Synthetic aperture PAFUSion to identify and reduce reflection artifacts in the in vivo measurement: (a) PAFUSion image, (b) corrected PA image.

Tables (2)

Tables Icon

Table 1 Comparison of Intensity Reduction Ratios (IRR) achieved using plane-wave and synthetic aperture PAFUSion for the phantom measurement

Tables Icon

Table 2 Comparison of Intensity Reduction Ratios (IRR) achieved using plane-wave and synthetic aperture PAFUSion for the in vivo measurement

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ^ ( ϕ k ,t )= 1 N n=1 N S( n,t+τ( n ) ) ,τ( n )= sin ϕ k x n c

Metrics