Abstract

Custom Spectral Optical Coherence Tomography (SOCT) provided with automatic quantification and distortion correction algorithms was used to measure the 3-D morphology in guinea pig eyes (n = 8, 30 days; n = 5, 40 days). Animals were measured awake in vivo under cyclopegia. Measurements showed low intraocular variability (<4% in corneal and anterior lens radii and <8% in the posterior lens radii, <1% interocular distances). The repeatability of the surface elevation was less than 2 µm. Surface astigmatism was the individual dominant term in all surfaces. Higher-order RMS surface elevation was largest in the posterior lens. Individual surface elevation Zernike terms correlated significantly across corneal and anterior lens surfaces. Higher-order-aberrations (except spherical aberration) were comparable with those predicted by OCT-based eye models.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

16 March 2017: Corrections were made to the author listing and funding section.


OSA Recommended Articles
OCT-based crystalline lens topography in accommodating eyes

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, and Susana Marcos
Biomed. Opt. Express 6(12) 5039-5054 (2015)

Full 3-D OCT-based pseudophakic custom computer eye model

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos
Biomed. Opt. Express 7(3) 1074-1088 (2016)

In vivo human crystalline lens topography

Sergio Ortiz, Pablo Pérez-Merino, Enrique Gambra, Alberto de Castro, and Susana Marcos
Biomed. Opt. Express 3(10) 2471-2488 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
    [PubMed]
  2. E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
    [Crossref] [PubMed]
  3. F. Schaeffel and M. Feldkaemper, “Animal models in myopia research,” Clin. Exp. Optom. 98(6), 507–517 (2015).
    [Crossref] [PubMed]
  4. M. H. Howlett and S. A. McFadden, “Form-deprivation myopia in the guinea pig (Cavia porcellus),” Vision Res. 46(1-2), 267–283 (2006).
    [Crossref] [PubMed]
  5. E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
    [Crossref] [PubMed]
  6. E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
    [Crossref] [PubMed]
  7. N. J. Coletta, S. Marcos, and D. Troilo, “Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error,” Vision Res. 50(23), 2515–2529 (2010).
    [Crossref] [PubMed]
  8. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).
  9. E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
    [Crossref] [PubMed]
  10. H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
    [Crossref] [PubMed]
  11. M. H. Howlett and S. A. McFadden, “Emmetropization and schematic eye models in developing pigmented guinea pigs,” Vision Res. 47(9), 1178–1190 (2007).
    [Crossref] [PubMed]
  12. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref] [PubMed]
  13. P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
    [Crossref] [PubMed]
  14. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  15. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
    [Crossref] [PubMed]
  16. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  17. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
    [Crossref] [PubMed]
  18. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
    [Crossref] [PubMed]
  19. E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
    [Crossref] [PubMed]
  20. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  21. E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
    [Crossref]
  22. M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
    [Crossref] [PubMed]
  23. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  24. E. Moreno-Barriuso and R. Navarro, “Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
    [Crossref] [PubMed]
  25. R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74(7), 540–547 (1997).
    [Crossref] [PubMed]
  26. S. Marcos, L. Díaz-Santana, L. Llorente, and C. Dainty, “Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19(6), 1063–1072 (2002).
    [Crossref] [PubMed]
  27. A. P. Lodge and T McFadden, SA, “Form deprivation myopia and emmetropization in the guinea pig,” Proc Aust Neurosci Soc 5, 123 (1994).
  28. S. A. W. J. McFadden, “Guinea-pig eye growth compensates for spectacle lenses,” Investigative Ophthalmology & Visual Science April 2011 Vol.52, 845. doi:  36(4),S758 (1995).
  29. S. A. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Vis. Sci. 43(13), 189 (2002).
    [PubMed]
  30. M. H. Howlett and S. A. McFadden, “Spectacle lens compensation in the pigmented guinea pig,” Vision Res. 49(2), 219–227 (2009).
    [Crossref] [PubMed]
  31. M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
    [Crossref] [PubMed]
  32. M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(3931), 605–606 (1970).
    [Crossref] [PubMed]
  33. H. C. Howland, “Allometry and scaling of wave aberration of eyes,” Vision Res. 45(9), 1091–1093 (2005).
    [Crossref] [PubMed]
  34. R. H. Kröger, “Optical plasticity in fish lenses,” Prog. Retin. Eye Res. 34, 78–88 (2013).
    [Crossref] [PubMed]
  35. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  36. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
    [Crossref] [PubMed]
  37. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
[Crossref] [PubMed]

2015 (4)

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

F. Schaeffel and M. Feldkaemper, “Animal models in myopia research,” Clin. Exp. Optom. 98(6), 507–517 (2015).
[Crossref] [PubMed]

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

2014 (3)

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

2013 (3)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

R. H. Kröger, “Optical plasticity in fish lenses,” Prog. Retin. Eye Res. 34, 78–88 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (3)

2009 (3)

2008 (1)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

2007 (2)

M. H. Howlett and S. A. McFadden, “Emmetropization and schematic eye models in developing pigmented guinea pigs,” Vision Res. 47(9), 1178–1190 (2007).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

2006 (3)

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Form-deprivation myopia in the guinea pig (Cavia porcellus),” Vision Res. 46(1-2), 267–283 (2006).
[Crossref] [PubMed]

E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
[Crossref] [PubMed]

2005 (1)

H. C. Howland, “Allometry and scaling of wave aberration of eyes,” Vision Res. 45(9), 1091–1093 (2005).
[Crossref] [PubMed]

2002 (2)

2000 (1)

1997 (1)

R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74(7), 540–547 (1997).
[Crossref] [PubMed]

1996 (1)

D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
[PubMed]

1995 (1)

S. A. W. J. McFadden, “Guinea-pig eye growth compensates for spectacle lenses,” Investigative Ophthalmology & Visual Science April 2011 Vol.52, 845. doi:  36(4),S758 (1995).

1994 (1)

A. P. Lodge and T McFadden, SA, “Form deprivation myopia and emmetropization in the guinea pig,” Proc Aust Neurosci Soc 5, 123 (1994).

1970 (1)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(3931), 605–606 (1970).
[Crossref] [PubMed]

Adams, A. J.

D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
[PubMed]

Alejandre, N.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Birkenfeld, J.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Bowrey, H. E.

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

Chia, N.

Coletta, N. J.

N. J. Coletta, S. Marcos, and D. Troilo, “Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error,” Vision Res. 50(23), 2515–2529 (2010).
[Crossref] [PubMed]

Dainty, C.

de Castro, A.

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

de la Cera, E. G.

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

Díaz-Santana, L.

Dolgin, E.

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

Durán, S.

Feldkaemper, M.

F. Schaeffel and M. Feldkaemper, “Animal models in myopia research,” Clin. Exp. Optom. 98(6), 507–517 (2015).
[Crossref] [PubMed]

Gambra, E.

García de la Cera, E.

E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
[Crossref] [PubMed]

Glasser, A.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).

Glickstein, M.

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(3931), 605–606 (1970).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Grulkowski, I.

Howland, H. C.

H. C. Howland, “Allometry and scaling of wave aberration of eyes,” Vision Res. 45(9), 1091–1093 (2005).
[Crossref] [PubMed]

Howlett, M. H.

M. H. Howlett and S. A. McFadden, “Spectacle lens compensation in the pigmented guinea pig,” Vision Res. 49(2), 219–227 (2009).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Emmetropization and schematic eye models in developing pigmented guinea pigs,” Vision Res. 47(9), 1178–1190 (2007).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Form-deprivation myopia in the guinea pig (Cavia porcellus),” Vision Res. 46(1-2), 267–283 (2006).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

Kowalczyk, A.

Kröger, R. H.

R. H. Kröger, “Optical plasticity in fish lenses,” Prog. Retin. Eye Res. 34, 78–88 (2013).
[Crossref] [PubMed]

Leotta, A. J.

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

Llorente, L.

Lodge, A. P.

A. P. Lodge and T McFadden, SA, “Form deprivation myopia and emmetropization in the guinea pig,” Proc Aust Neurosci Soc 5, 123 (1994).

Losada, M. A.

R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74(7), 540–547 (1997).
[Crossref] [PubMed]

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Manns, F.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Marcos, S.

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

N. J. Coletta, S. Marcos, and D. Troilo, “Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error,” Vision Res. 50(23), 2515–2529 (2010).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

S. Marcos, L. Díaz-Santana, L. Llorente, and C. Dainty, “Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19(6), 1063–1072 (2002).
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).

Martinez-Enriquez, E.

McFadden, S. A.

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Spectacle lens compensation in the pigmented guinea pig,” Vision Res. 49(2), 219–227 (2009).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Emmetropization and schematic eye models in developing pigmented guinea pigs,” Vision Res. 47(9), 1178–1190 (2007).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Form-deprivation myopia in the guinea pig (Cavia porcellus),” Vision Res. 46(1-2), 267–283 (2006).
[Crossref] [PubMed]

S. A. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Vis. Sci. 43(13), 189 (2002).
[PubMed]

McFadden, S. A. W. J.

S. A. W. J. McFadden, “Guinea-pig eye growth compensates for spectacle lenses,” Investigative Ophthalmology & Visual Science April 2011 Vol.52, 845. doi:  36(4),S758 (1995).

McFadden, T

A. P. Lodge and T McFadden, SA, “Form deprivation myopia and emmetropization in the guinea pig,” Proc Aust Neurosci Soc 5, 123 (1994).

Merayo, J.

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

Metse, A. P.

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

Millodot, M.

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(3931), 605–606 (1970).
[Crossref] [PubMed]

Moreno-Barriuso, E.

Mutti, D. O.

D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
[PubMed]

Navarro, R.

E. Moreno-Barriuso and R. Navarro, “Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
[Crossref] [PubMed]

R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74(7), 540–547 (1997).
[Crossref] [PubMed]

Ortiz, S.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

Parel, J. M.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Pascual, D.

Perez-Merino, P.

Pérez-Merino, P.

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

Remon, L.

Rodríguez, G.

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

Rosales, P.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).

Schaeffel, F.

F. Schaeffel and M. Feldkaemper, “Animal models in myopia research,” Clin. Exp. Optom. 98(6), 507–517 (2015).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

Siedlecki, D.

Sun, M.

Szkulmowski, M.

Szlag, D.

Troilo, D.

N. J. Coletta, S. Marcos, and D. Troilo, “Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error,” Vision Res. 50(23), 2515–2529 (2010).
[Crossref] [PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Velasco-Ocana, M.

Wendt, M.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).

Wojtkowski, M.

Zadnik, K.

D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
[PubMed]

Zeng, G.

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (7)

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

E. Martinez-Enriquez, P. Perez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

Clin. Exp. Optom. (2)

F. Schaeffel and M. Feldkaemper, “Animal models in myopia research,” Clin. Exp. Optom. 98(6), 507–517 (2015).
[Crossref] [PubMed]

H. E. Bowrey, A. P. Metse, A. J. Leotta, G. Zeng, and S. A. McFadden, “The relationship between image degradation and myopia in the mammalian eye,” Clin. Exp. Optom. 98(6), 555–563 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

D. O. Mutti, K. Zadnik, and A. J. Adams, “Myopia. The nature versus nurture debate goes on,” Invest. Ophthalmol. Vis. Sci. 37(6), 952–957 (1996).
[PubMed]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), 600–610 (2016).
[Crossref] [PubMed]

S. A. McFadden, “Partial occlusion produces local form deprivation myopia in the guinea pig eye,” Invest. Ophthalmol. Vis. Sci. 43(13), 189 (2002).
[PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Investigative Ophthalmology & Visual Science April 2011 (1)

S. A. W. J. McFadden, “Guinea-pig eye growth compensates for spectacle lenses,” Investigative Ophthalmology & Visual Science April 2011 Vol.52, 845. doi:  36(4),S758 (1995).

J. Opt. Soc. Am. A (2)

Nature (1)

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Optom. Vis. Sci. (1)

R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74(7), 540–547 (1997).
[Crossref] [PubMed]

Proc Aust Neurosci Soc (1)

A. P. Lodge and T McFadden, SA, “Form deprivation myopia and emmetropization in the guinea pig,” Proc Aust Neurosci Soc 5, 123 (1994).

Prog. Retin. Eye Res. (1)

R. H. Kröger, “Optical plasticity in fish lenses,” Prog. Retin. Eye Res. 34, 78–88 (2013).
[Crossref] [PubMed]

Science (1)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(3931), 605–606 (1970).
[Crossref] [PubMed]

Vision Res. (9)

H. C. Howland, “Allometry and scaling of wave aberration of eyes,” Vision Res. 45(9), 1091–1093 (2005).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Spectacle lens compensation in the pigmented guinea pig,” Vision Res. 49(2), 219–227 (2009).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Emmetropization and schematic eye models in developing pigmented guinea pigs,” Vision Res. 47(9), 1178–1190 (2007).
[Crossref] [PubMed]

M. H. Howlett and S. A. McFadden, “Form-deprivation myopia in the guinea pig (Cavia porcellus),” Vision Res. 46(1-2), 267–283 (2006).
[Crossref] [PubMed]

E. García de la Cera, G. Rodríguez, and S. Marcos, “Longitudinal changes of optical aberrations in normal and form-deprived myopic chick eyes,” Vision Res. 46(4), 579–589 (2006).
[Crossref] [PubMed]

E. G. de la Cera, G. Rodríguez, A. de Castro, J. Merayo, and S. Marcos, “Emmetropization and optical aberrations in a myopic corneal refractive surgery chick model,” Vision Res. 47(18), 2465–2472 (2007).
[Crossref] [PubMed]

N. J. Coletta, S. Marcos, and D. Troilo, “Ocular wavefront aberrations in the common marmoset Callithrix jacchus: effects of age and refractive error,” Vision Res. 50(23), 2515–2529 (2010).
[Crossref] [PubMed]

Other (1)

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 1–12 (2008).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (3059 KB)      Three-dimensional Guinea Pig

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the image processing and quantification algorithm: (1) three acquisitions of cornea, crystalline lens and retina images; (2) merging of segmented anterior segment volumes (cornea and crystalline) by using the pupil as fixed reference to obtain a 3-D full volume; (3) corneal and crystalline lens surfaces corrected from fan and optical distortion; (4) Quantification: (a) 3-D model eye, (b) quantitative elevation maps (elevation maps represent only the high-order coefficients), (c) full shape reconstruction of the crystalline lens, and (d) wavefront computation in ZEMAX by tracing rays through 3-D corneal and lens surfaces (WF map represents the HOAs).

Fig. 2
Fig. 2

LRT measurement illustration on a guinea pig eye. Left: Back illuminated pupillary image collected in pupil camera. Right: example of 4 retinal images and the corresponding centroid position of the retinal spots.

Fig. 3
Fig. 3

(Visualization 1). Example of the OCT analysis on a guinea pig eye at 30 days. Left: 3-D view of the merged whole guinea pig eye (cornea, crystalline lens and retina) and the corresponding geometrical and biometrical data. Right: volume (VOL, in mm3), diameter (DIA, in mm), equatorial plane position (EPP, in mm), lens surface area (LSA, in mm2) and the surface elevation maps (maps represent astigmatism and high-order coefficients). Data are shown as mean ± standard deviation.

Fig. 4
Fig. 4

Anterior and posterior corneal and crystalline lens surface elevation maps at 30 and 40 days (astigmatism and HOAs: maps exclude tilt and defocus; HOAs: maps exclude tilt, defocus and astigmatism. Scale bar range in mm).

Fig. 5
Fig. 5

A. LRT (experimental) and OCT (simulation) ocular aberration wavefront maps for 4 different eyes (HOAs: maps exclude tilt, defocus and astigmatism). B. Corresponding wave high-order Zernike terms. Data are for 2-mm pupil diameter.

Fig. 6
Fig. 6

One-dimensional (graph) and two-dimensional (colour panel) modulation transfer function (MTFs) for high-order aberrations in two guinea pig eyes (LRT and OCT; top: eye#1, bottom: eye#4) and one human eye (LRT). Data are for 2-mm pupils.

Tables (3)

Tables Icon

Table 1 Biometrical and geometrical properties for the five corresponding eyes at 30 and 40 days (average ± SD; R, axial distances, DIA and EPP in mm; VOL in mm3 and LSA in mm2). *represents statistically significant (p<0.05).

Tables Icon

Table 2 RMS of the anterior segment surfaces at 30 and 40 days (average ± SD, µm)

Tables Icon

Table 3 Pearson correlation coefficient and p-value between corneal and lens surfaces at 30 and 40 days (average of eyes)

Metrics