Abstract

Three-dimensional fluorescence laminar optical tomography (FLOT) can achieve resolutions of 100-200 µm and penetration depths of 2-3 mm. FLOT has been used in tissue engineering, neuroscience, as well as oncology. The limited dynamic range of the charge-coupled device-based system makes it difficult to image fluorescent samples with a large concentration difference, limits its penetration depth, and diminishes the quantitative accuracy of 3D reconstruction data. Here, incorporating the high-dynamic-range (HDR) method widely used in digital cameras, we present HDR-FLOT, increasing penetration depth and improving the ability to image fluorescent samples with a large concentration difference. The method was tested using an agar phantom and a B6 mouse for brain imaging in vivo.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences

Lichao Lian, Yong Deng, Wenhao Xie, Guoqiang Xu, Xiaoquan Yang, Zhihong Zhang, and Qingming Luo
Opt. Express 24(17) 19920-19933 (2016)

High dynamic range optical projection tomography (HDR-OPT)

Peng Fei, Zhilong Yu, Xu Wang, Peter J. Lu, Yusi Fu, Zi He, Jingwei Xiong, and Yanyi Huang
Opt. Express 20(8) 8824-8836 (2012)

High dynamic range optical coherence tomography angiography (HDR-OCTA)

Xiang Wei, Tristan T. Hormel, Shaohua Pi, Yukun Guo, Yifan Jian, and Yali Jia
Biomed. Opt. Express 10(7) 3560-3571 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007).
    [Crossref] [PubMed]
  2. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
    [Crossref] [PubMed]
  3. Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
    [Crossref] [PubMed]
  4. A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25(24), 1777–1779 (2000).
    [Crossref] [PubMed]
  5. B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
    [Crossref] [PubMed]
  6. Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
    [Crossref] [PubMed]
  7. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
    [Crossref] [PubMed]
  8. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
    [Crossref] [PubMed]
  9. S. A. Burgess, D. Ratner, B. R. Chen, and E. M. Hillman, “Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications,” Biomed. Opt. Express 1(3), 780–790 (2010).
    [Crossref] [PubMed]
  10. S. Björn, V. Ntziachristos, and R. Schulz, “Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media,” Opt. Express 18(8), 8422–8429 (2010).
    [Crossref] [PubMed]
  11. L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
    [Crossref] [PubMed]
  12. M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
    [Crossref] [PubMed]
  13. M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
    [Crossref] [PubMed]
  14. S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
    [Crossref] [PubMed]
  15. Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
    [Crossref]
  16. M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
    [Crossref] [PubMed]
  17. Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
    [Crossref] [PubMed]
  18. M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
    [Crossref]
  19. B. C. Madden, “Extended intensity range imaging,” Technical Report, GRASP Laboratory, University of Pennsylvania (1993).
  20. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM SIGGRAPH 2008 classes (ACM, 2008), p. 31.
  21. L. Lian, Y. Deng, W. Xie, G. Xu, X. Yang, Z. Zhang, and Q. Luo, “High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences,” Opt. Express 24(17), 19920–19933 (2016).
    [Crossref] [PubMed]
  22. P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
    [Crossref] [PubMed]
  23. C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
    [Crossref] [PubMed]
  24. C.-W. Chen, A. B. Yeatts, E. E. Coates, J. P. Fisher, and Y. Chen, “Experimental Demonstration of Angled Fluorescent Laminar Optical Tomography for Tissue Engineering,” in Biomedical Optics and 3-D Imaging(Optical Society of America, Miami, Florida, 2012), p. BTu4A.5.
  25. C. W. Chen and Y. Chen, “Optimization Of Design Parameters for Fluorescence Laminar Optical Tomography,” J. Innov. Opt. Health Sci. 4(03), 309–323 (2011).
    [Crossref]
  26. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
    [Crossref] [PubMed]
  27. C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
    [Crossref] [PubMed]
  28. Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
    [PubMed]
  29. L. Wang and S. L. Jacques, “Use Of a Laser Beam with an Oblique Angle of Incidence to Measure the Reduced Scattering Coefficient of a Turbid Medium,” Appl. Opt. 34(13), 2362–2366 (1995).
    [Crossref] [PubMed]
  30. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
    [Crossref] [PubMed]
  31. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
    [Crossref] [PubMed]
  32. Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
    [Crossref] [PubMed]
  33. V. Tsytsarev, K. Premachandra, D. Takeshita, and S. Bahar, “Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes,” Opt. Lett. 33(9), 1032–1034 (2008).
    [Crossref] [PubMed]
  34. V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
    [Crossref] [PubMed]
  35. V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
    [Crossref] [PubMed]
  36. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  37. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [Crossref] [PubMed]
  38. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
    [Crossref]
  39. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
    [Crossref] [PubMed]
  40. T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. C. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).
    [Crossref] [PubMed]
  41. N. Ouakli, E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–10077 (2010).
    [Crossref] [PubMed]

2017 (1)

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

2016 (5)

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

L. Lian, Y. Deng, W. Xie, G. Xu, X. Yang, Z. Zhang, and Q. Luo, “High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences,” Opt. Express 24(17), 19920–19933 (2016).
[Crossref] [PubMed]

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

2015 (2)

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

2014 (1)

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

2013 (1)

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

2012 (4)

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
[Crossref] [PubMed]

P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
[Crossref] [PubMed]

T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. C. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).
[Crossref] [PubMed]

2011 (4)

C. W. Chen and Y. Chen, “Optimization Of Design Parameters for Fluorescence Laminar Optical Tomography,” J. Innov. Opt. Health Sci. 4(03), 309–323 (2011).
[Crossref]

C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
[Crossref] [PubMed]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
[Crossref] [PubMed]

2010 (6)

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

S. A. Burgess, D. Ratner, B. R. Chen, and E. M. Hillman, “Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications,” Biomed. Opt. Express 1(3), 780–790 (2010).
[Crossref] [PubMed]

S. Björn, V. Ntziachristos, and R. Schulz, “Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media,” Opt. Express 18(8), 8422–8429 (2010).
[Crossref] [PubMed]

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

N. Ouakli, E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–10077 (2010).
[Crossref] [PubMed]

2009 (2)

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[Crossref] [PubMed]

2003 (2)

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

1995 (1)

1993 (1)

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

Akkentli, F.

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

Bacskai, B. J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Bahar, S.

Beaumont, E.

Bernardelli, C.

V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
[Crossref] [PubMed]

Bernus, O.

Björn, S.

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
[Crossref] [PubMed]

S. Björn, V. Ntziachristos, and R. Schulz, “Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media,” Opt. Express 18(8), 8422–8429 (2010).
[Crossref] [PubMed]

Blackwell, T. R.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Boas, D.

Boas, D. A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[Crossref] [PubMed]

Bordier, C.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

Borman, S.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Bouchard, M. B.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007).
[Crossref] [PubMed]

Burgess, S. A.

Cable, A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Chance, B.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Chen, B. R.

Chen, C. W.

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

C. W. Chen and Y. Chen, “Optimization Of Design Parameters for Fluorescence Laminar Optical Tomography,” J. Innov. Opt. Health Sci. 4(03), 309–323 (2011).
[Crossref]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Chen, Y.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

C. W. Chen and Y. Chen, “Optimization Of Design Parameters for Fluorescence Laminar Optical Tomography,” J. Innov. Opt. Health Sci. 4(03), 309–323 (2011).
[Crossref]

C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
[Crossref] [PubMed]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Culver, J. P.

Dai, G.

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Dale, A. M.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Deng, Y.

Devor, A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Dubeau, S.

Dunn, A.

Dunn, A. K.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[Crossref] [PubMed]

Englmeier, K. H.

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
[Crossref] [PubMed]

Erzurumlu, R. S.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

Fei, P.

Fisher, J. P.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Frank, A.

Fu, Y.

Fumene Feruglio, P.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

German, D.

Giedt, R. J.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Giller, C.

Glunde, K.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Greenwald, B. D.

Griffiths, G.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Guevara, E.

Hansen, P. C.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

He, Z.

Hillman, E. M.

Hillman, E. M. C.

T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. C. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).
[Crossref] [PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007).
[Crossref] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[Crossref] [PubMed]

Hofmann, M.

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

Holboke, M. J.

Huang, Y.

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Intes, X.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Iranmahboob, A.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

Jacques, S. L.

Jafri, M. S.

Ji, R.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Jiang, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Jin, L.

Johns, M.

Krauss, G. W.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Lee, V. K.

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Lehrer, N.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

Leon Swisher, C.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Lesage, F.

Li, Q.

Li, Q. A.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Li, Z.

Lian, L.

Liang, C. P.

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
[Crossref] [PubMed]

Liang, C.-P.

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Lin, J.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Liu, H.

Liu, Y.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Lu, P. J.

Luo, Q.

Ma, H.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Mashimo, H.

Maslov, K. I.

V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
[Crossref] [PubMed]

Moreira, T.

Muldoon, T. J.

Naphas, R.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Nguyen, B. N. B.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Nioka, S.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Ntziachristos, V.

O’Leary, D. P.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

Ouakli, N.

Ozturk, M. S.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

Pease, E.

Pertsov, A.

Pope, D.

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

Premachandra, K.

Pumbo, E.

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

Raman, V.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Ratner, D.

Ripoll, J.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Robertson, M. A.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Rohrbach, D.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Roney, C. A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Rousso, D. L.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Sandler, A.

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Schulz, R.

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
[Crossref] [PubMed]

S. Björn, V. Ntziachristos, and R. Schulz, “Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media,” Opt. Express 18(8), 8422–8429 (2010).
[Crossref] [PubMed]

Schwartzbauer, G.

Skoch, J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Stapleton, S.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Stevenson, R. L.

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

Summers, R. M.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Sunar, U.

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Takeshita, D.

Tang, C. M.

Tang, Q.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Q. Tang, J. Wang, A. Frank, J. Lin, Z. Li, C. W. Chen, L. Jin, T. Wu, B. D. Greenwald, H. Mashimo, and Y. Chen, “Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography,” Biomed. Opt. Express 7(12), 5218–5232 (2016).
[Crossref] [PubMed]

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

Tsytsarev, V.

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
[Crossref] [PubMed]

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

V. Tsytsarev, K. Premachandra, D. Takeshita, and S. Bahar, “Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes,” Opt. Lett. 33(9), 1032–1034 (2008).
[Crossref] [PubMed]

Vinegoni, C.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Wang, X.

Weissleder, R.

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Wierwille, J.

C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
[Crossref] [PubMed]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Winnard, P. T.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Wu, K.

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Wu, T.

Wu, Y.

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Xie, W.

Xiong, J.

Xu, B.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Xu, G.

Yablonskii, A.

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

Yang, X.

Yodh, A. G.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
[Crossref] [PubMed]

Yoo, S. S.

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Yu, Z.

Yuan, B.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

Yuan, S.

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Zhang, Z.

Zhao, L.

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Acad. Radiol. (1)

M. S. Ozturk, D. Rohrbach, U. Sunar, and X. Intes, “Mesoscopic fluorescence tomography of a photosensitizer (HPPH) 3D biodistribution in skin cancer,” Acad. Radiol. 21(2), 271–280 (2014).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

M. S. Ozturk, C. W. Chen, R. Ji, L. Zhao, B. N. B. Nguyen, J. P. Fisher, Y. Chen, and X. Intes, “Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues,” Ann. Biomed. Eng. 44(3), 667–679 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomaterials (1)

L. Zhao, V. K. Lee, S. S. Yoo, G. Dai, and X. Intes, “The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds,” Biomaterials 33(21), 5325–5332 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

IEEE J Sel, Top. Quant. (1)

Y. Chen, S. Yuan, J. Wierwille, R. Naphas, Q. A. Li, T. R. Blackwell, P. T. Winnard, V. Raman, and K. Glunde, “Integrated Optical Coherence Tomography (OCT) and Fluorescence Laminar Optical Tomography (FLOT),” IEEE J Sel, Top. Quant. 16(4), 755–766 (2010).
[Crossref]

J. Biomed. Opt. (2)

M. S. Ozturk, V. K. Lee, L. Zhao, G. Dai, and X. Intes, “Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue,” J. Biomed. Opt. 18(10), 100501 (2013).
[Crossref] [PubMed]

S. Björn, K. H. Englmeier, V. Ntziachristos, and R. Schulz, “Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography,” J. Biomed. Opt. 16(4), 046005 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

J. Electron. Imaging (1)

M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimation-theoretic approach to dynamic range enhancement using multiple exposures,” J. Electron. Imaging 12(2), 219–228 (2003).
[Crossref]

J. Innov. Opt. Health Sci. (1)

C. W. Chen and Y. Chen, “Optimization Of Design Parameters for Fluorescence Laminar Optical Tomography,” J. Innov. Opt. Health Sci. 4(03), 309–323 (2011).
[Crossref]

J. Neurosci. Neuroeng. (1)

V. Tsytsarev, C. Bernardelli, and K. I. Maslov, “Living Brain Optical Imaging: Technology, Methods and Applications,” J. Neurosci. Neuroeng. 1(2), 180–192 (2012).
[Crossref] [PubMed]

Med. Phys. (1)

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Vinegoni, C. Leon Swisher, P. Fumene Feruglio, R. J. Giedt, D. L. Rousso, S. Stapleton, and R. Weissleder, “Real-time high dynamic range laser scanning microscopy,” Nat. Commun. 7, 11077 (2016).
[Crossref] [PubMed]

Neuroimage (2)

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

V. Tsytsarev, D. Pope, E. Pumbo, A. Yablonskii, and M. Hofmann, “Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging,” Neuroimage 53(1), 233–238 (2010).
[Crossref] [PubMed]

Neurophotonics (1)

Q. Tang, J. Lin, V. Tsytsarev, R. S. Erzurumlu, Y. Liu, and Y. Chen, “Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities,” Neurophotonics 4(1), 011009 (2017).
[Crossref] [PubMed]

Opt. Express (7)

S. Björn, V. Ntziachristos, and R. Schulz, “Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media,” Opt. Express 18(8), 8422–8429 (2010).
[Crossref] [PubMed]

E. M. C. Hillman, O. Bernus, E. Pease, M. B. Bouchard, and A. Pertsov, “Depth-resolved optical imaging of transmural electrical propagation in perfused heart,” Opt. Express 15(26), 17827–17841 (2007).
[Crossref] [PubMed]

L. Lian, Y. Deng, W. Xie, G. Xu, X. Yang, Z. Zhang, and Q. Luo, “High-dynamic-range fluorescence molecular tomography for imaging of fluorescent targets with large concentration differences,” Opt. Express 24(17), 19920–19933 (2016).
[Crossref] [PubMed]

P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express 20(8), 8824–8836 (2012).
[Crossref] [PubMed]

M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005).
[Crossref] [PubMed]

C. P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M. S. Jafri, C. M. Tang, and Y. Chen, “A forward-imaging needle-type OCT probe for image guided stereotactic procedures,” Opt. Express 19(27), 26283–26294 (2011).
[Crossref] [PubMed]

N. Ouakli, E. Guevara, S. Dubeau, E. Beaumont, and F. Lesage, “Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats,” Opt. Express 18(10), 10068–10077 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (1)

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Quant. Imaging Med. Surg. (1)

Q. Tang, C.-P. Liang, K. Wu, A. Sandler, and Y. Chen, “Real-time epidural anesthesia guidance using optical coherence tomography needle probe,” Quant. Imaging Med. Surg. 5(1), 118–124 (2015).
[PubMed]

Rev. Sci. Instrum. (1)

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[Crossref] [PubMed]

Sci. Rep. (2)

Q. Tang, V. Tsytsarev, A. Frank, Y. Wu, C. W. Chen, R. S. Erzurumlu, and Y. Chen, “In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation,” Sci. Rep. 6(1), 25269 (2016).
[Crossref] [PubMed]

Q. Tang, V. Tsytsarev, C. P. Liang, F. Akkentli, R. S. Erzurumlu, and Y. Chen, “In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function,” Sci. Rep. 5, 17325 (2015).
[Crossref] [PubMed]

Science (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

SIAM J. Sci. Comput. (1)

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[Crossref]

Other (3)

C.-W. Chen, A. B. Yeatts, E. E. Coates, J. P. Fisher, and Y. Chen, “Experimental Demonstration of Angled Fluorescent Laminar Optical Tomography for Tissue Engineering,” in Biomedical Optics and 3-D Imaging(Optical Society of America, Miami, Florida, 2012), p. BTu4A.5.

B. C. Madden, “Extended intensity range imaging,” Technical Report, GRASP Laboratory, University of Pennsylvania (1993).

P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM SIGGRAPH 2008 classes (ACM, 2008), p. 31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) Schematic of the FLOT system. (B) Schematic of the OCT system. FC: fiber coupler; PC: polarization controller; C: collimator, BD: balanced detector, MZI: Mach-Zehnder interferometer (frequency clocks), DAQ: data acquisition board, M: mirror, GSM: galvanometer scanning mirror, O: objective lens, LD: laser diode, P: polarizer, S: shutter, I: iris, CL: cylindrical lens, FW: filter wheel. (C) Photo of the black tape on the surface of the agar phantom. (D) Surface of the agar phantom from stacked 3D reflectance data. (E) Surface of the agar phantom from OCT. (F) Co-registered OCT and FLOT images by the black tape.
Fig. 2
Fig. 2 (A) Image from OCT system of the three capillaries filled with Cy 5.5 solution, indicated by the 3 arrows (red: 2 µM (C1), yellow: 1 µM (C2), green: 0.2 µM (C3)). (B) 3D rendered images of the 3 capillaries from the OCT system. (C-E) 2D images obtained from FLOT using exposure times of 100 ms, 500 ms, and 2000 ms. (F) Recovered CCD response curve; the solid black line is the fitted curve (x axis is in loge scale). (G) Constructed 2D HDR-FLOT image.
Fig. 3
Fig. 3 Average fluorescence intensity of the raw 2D fluorescence images as a function of true Cy 5.5 concentration with exposure times of 100 ms (A), 500 ms (B), 2000 ms (C), and the HDR method (D). The fluorescence values were normalized to the maximum value (n = 100). (E) Average CCD response error ratios with different exposure times (n = 100).
Fig. 4
Fig. 4 3D FLOT reconstructed images in the agar phantom with μs´ = 0.23/mm at 635 nm. (A-C) 3D FLOT reconstructed images with exposure time of 100 ms, 500 ms, and 2000 ms. (D) 3D HDR-FLOT reconstructed image. (E-H) Co-registered 3D FLOT reconstructed images with corresponding OCT images (green). The Max in the colormap is the maximum value in the image and Min represents the value: (Background + (Max-Background)/2).
Fig. 5
Fig. 5 Average fluorescence intensity of the 3D images as a function of true Cy 5.5 concentration with exposure time 100 ms (A), 500 ms (B), 2000 ms (C), and the HDR method (D). The fluorescence values were normalized to the maximum value (n = 50). (E) Average fluorescence response error ratios with different exposure times (n = 50). (F) Diameter difference ratios for FLOT with different exposure time at different Cy 5.5 concentrations compared to OCT data (n = 50). (G) Average diameter difference ratios for FLOT with different exposure times compared to OCT data (n = 5).
Fig. 6
Fig. 6 3D FLOT reconstructed images in the agar phantom with μs´ = 1.2/mm at 635 nm. (A-C) 3D FLOT reconstructed images with exposure times of 100 ms, 500 ms, and 2000 ms. (D) 3D HDR-FLOT reconstructed image. (E-H) Co-registered 3D FLOT reconstructed images with corresponding OCT images (green). The Max in the colormap is the maximum value in the image and Min represents the value: (Background + (Max-Background)/2).
Fig. 7
Fig. 7 (A) Photo of a 150-µm capillary in the mouse brain in vivo. (B) 3D FLOT reconstructed oblique capillary with exposure times of 100 ms, 500 ms, and 2000 ms, and HDR-FLOT. (C) Capillary depths in mouse brain from FLOT with exposure times of 100 ms, 500 ms, and 2000 ms and HDR-FLOT (n = 5). (D) Diameter difference ratios for FLOT with different exposure times as a function of depth compared to OCT data. The Max in the colormap is the maximum value in the image and Min represents the value: (Background + (Max-Background)/2).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Z Z sample Z background
Z ij =f( E i t j )
f 1 ( Z ij )= E i t j
ln f 1 ( Z i j )=ln E i +ln t j
g( Z i j )=ln E i +ln t j
O= i=l N j=l T ω(Z) [ g( Z i j )ln E i ln t j ] 2 +σ
w(Z)={ Z Z min forZ 1 2 ( Z min + Z max ) Z max Z forZ> 1 2 ( Z min + Z max )
ln E HDR = i=l N j=l T ω(Z) [ g( Z i j )ln t j ] i=l N j=l T ω( Z i j )

Metrics