Abstract

We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fixational eye movement: a negligible source of dynamic aberration

Pedro Mecê, Jessica Jarosz, Jean-Marc Conan, Cyril Petit, Kate Grieve, Michel Paques, and Serge Meimon
Biomed. Opt. Express 9(2) 717-727 (2018)

High-speed adaptive optics for imaging of the living human eye

Yongxin Yu, Tianjiao Zhang, Alexander Meadway, Xiaolin Wang, and Yuhua Zhang
Opt. Express 23(18) 23035-23052 (2015)

Closed-loop adaptive optics in the human eye

Enrique J. Fernández, Ignacio Iglesias, and Pablo Artal
Opt. Lett. 26(10) 746-748 (2001)

References

  • View by:
  • |
  • |
  • |

  1. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
    [Crossref] [PubMed]
  2. H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
    [Crossref] [PubMed]
  3. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26(10), 746–748 (2001).
    [Crossref]
  4. C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
    [Crossref]
  5. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [Crossref] [PubMed]
  6. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
    [Crossref] [PubMed]
  7. A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
    [Crossref]
  8. J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an Adaptive Optics Optical Coherence Tomography System,” Opt. Express 17(16), 13768–13784 (2009).
    [Crossref] [PubMed]
  9. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [Crossref]
  10. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [Crossref]
  11. N. Doble and D. T. Miller, “Wavefront correctors for vision science,” In Adaptive Optics for Vision Science, J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds. (Wiley-Interscience, 2006).
  12. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
    [Crossref] [PubMed]
  13. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [Crossref]
  14. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003).
    [Crossref] [PubMed]
  15. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11(21), 2704–2716 (2003).
    [Crossref] [PubMed]
  16. A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Opthal. Physiol. Opt. 29(3), 256–263 (2009).
    [Crossref]
  17. C. Leahy and C. Dainty, “A non-stationary model for simulating the dynamics of ocular aberrations,” Opt. Express 18(20), 21386–21396 (2010).
    [Crossref] [PubMed]
  18. K. M. Hampson and E. A. H. Mallen, “Multifractal nature of ocular aberration dynamics of the human eye,” Biomed. Opt. Express 2(3), 464–470 (2011).
    [Crossref] [PubMed]
  19. E. Chirre, P. Prieto, and P. Artal, “Dynamics of the near response under natural viewing conditions with an open-view sensor,” Biomed. Opt. Express 6(10), 4200–4211 (2015).
    [Crossref] [PubMed]
  20. L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74(6), 367–375 (1997).
    [Crossref]
  21. C. Coe, A. Bradley, and L. Thibos, “Polychromatic refractive error from monochromatic wavefront aberrometry,” Optom. Vision Sci. 91(10), 1167–1174 (2014).
    [Crossref]
  22. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  23. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  24. S. Meimon, J. Jarosz, C. Petit, E. G. Salas, K. Grieve, J.-M. Conan, B. Emica, M. Paques, and K. Irsch, “Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology,” Appl. Opt. 56(9), D66–D71 (2017).
    [Crossref]
  25. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [Crossref]
  26. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” Cataract Refract. Surg. 32(12), 2064–2074 (2006).
    [Crossref]
  27. W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8(2), 153–163 (1988).
    [Crossref] [PubMed]
  28. B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
    [Crossref]
  29. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, “Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system,” J. Opt. Soc. Am. A 22(7), 1241–1250 (2005).
    [Crossref]
  30. J.-M. Conan, G. Rousset, and P.-Y. Madec, “Wave-front temporal spectra in high-resolution imaging through turbulence,” J. Opt. Soc. Am. A 12(7), 1559–1570 (1995).
    [Crossref]
  31. G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy (Cambridge University Press, 1999).
    [Crossref]
  32. F. Rigaut and E. Gendron, “Laser guide star in adaptive optics - The tilt determination problem,” Astron. Astrophys. 261(2), 677–684 (1992).
  33. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
    [Crossref]
  34. G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
    [Crossref] [PubMed]
  35. C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).
  36. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
    [Crossref] [PubMed]
  37. S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).
  38. Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
    [Crossref] [PubMed]
  39. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).
    [Crossref] [PubMed]
  40. J. van de Kraats and D. van Norren, “Directional and nondirectional spectral reflection from the human fovea,” J. Biomed. Opt. 13(2), 024010 (2008).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

2015 (4)

2014 (4)

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

C. Coe, A. Bradley, and L. Thibos, “Polychromatic refractive error from monochromatic wavefront aberrometry,” Optom. Vision Sci. 91(10), 1167–1174 (2014).
[Crossref]

G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
[Crossref] [PubMed]

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

2011 (3)

2010 (2)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

C. Leahy and C. Dainty, “A non-stationary model for simulating the dynamics of ocular aberrations,” Opt. Express 18(20), 21386–21396 (2010).
[Crossref] [PubMed]

2009 (3)

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Opthal. Physiol. Opt. 29(3), 256–263 (2009).
[Crossref]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an Adaptive Optics Optical Coherence Tomography System,” Opt. Express 17(16), 13768–13784 (2009).
[Crossref] [PubMed]

2008 (1)

J. van de Kraats and D. van Norren, “Directional and nondirectional spectral reflection from the human fovea,” J. Biomed. Opt. 13(2), 024010 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (2)

2002 (1)

2001 (4)

1997 (1)

L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74(6), 367–375 (1997).
[Crossref]

1995 (1)

1992 (2)

F. Rigaut and E. Gendron, “Laser guide star in adaptive optics - The tilt determination problem,” Astron. Astrophys. 261(2), 677–684 (1992).

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

1989 (1)

1988 (1)

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8(2), 153–163 (1988).
[Crossref] [PubMed]

1976 (1)

Aragón, J. L.

Artal, P.

Atkinson, D.

Baruffolo, A.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Basden, A.

Beuzit, J. L.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Bille, J.

Bradley, A.

Brockmann, D.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Carroll, J.

Charman, W. N.

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8(2), 153–163 (1988).
[Crossref] [PubMed]

Château, N.

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Chemla, F.

Chen, L.

Cheng, X.

Chirre, E.

Coe, C.

C. Coe, A. Bradley, and L. Thibos, “Polychromatic refractive error from monochromatic wavefront aberrometry,” Optom. Vision Sci. 91(10), 1167–1174 (2014).
[Crossref]

Conan, J.-M.

Cooper, R. F.

Cortes, D.

Costille, A.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Cox, I. G.

Dainty, C.

Delori, F. C.

Diaz-Santana, L.

Dickson, C.

Dipper, N.

Doble, N.

N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
[Crossref] [PubMed]

N. Doble and D. T. Miller, “Wavefront correctors for vision science,” In Adaptive Optics for Vision Science, J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds. (Wiley-Interscience, 2006).

Dohlen, K.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Dorronsoro, C.

Dubis, A. M.

Dubra, A.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Emica, B.

Evans, J. W.

Fernández, E. J.

Fusco, T.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Gasson, P.

Gendron, E.

Gewohn, T.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Gratadour, D.

Grieve, K.

Guirao, A.

Hampson, K. M.

Hansen, A.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

Henry, D.

Heron, G.

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8(2), 153–163 (1988).
[Crossref] [PubMed]

Hofer, H.

Hong, X.

Horke, K.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Horner, D.

L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74(6), 367–375 (1997).
[Crossref]

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Hubert, Z.

Iglesias, I.

Irsch, K.

Jarosz, J.

S. Meimon, J. Jarosz, C. Petit, E. G. Salas, K. Grieve, J.-M. Conan, B. Emica, M. Paques, and K. Irsch, “Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology,” Appl. Opt. 56(9), D66–D71 (2017).
[Crossref]

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

Jones, S. M.

Jonnal, R. S.

Kasper, M.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Knoop, G.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Krüger, A.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

Kulcsar, C.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Kulcsár, C.

Lamory, B.

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Leahy, C.

Levecq, X.

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Longmore, A.

Lundström, L.

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Opthal. Physiol. Opt. 29(3), 256–263 (2009).
[Crossref]

Madec, P.-Y.

Mallen, E. A. H.

Marcos, S.

Martin, O.

Matthias, B.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

Meadway, A.

Mecê, P. B.

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

Meimon, S.

Miller, D. T.

Mira-Agudelo, A.

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Opthal. Physiol. Opt. 29(3), 256–263 (2009).
[Crossref]

Morris, T.

Mouillet, D.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Munro, I.

Myers, R.

Nakashima, K.

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Nirmaier, T.

Noll, R. J.

Norris, J. L.

Olivier, S. S.

Paques, M.

S. Meimon, J. Jarosz, C. Petit, E. G. Salas, K. Grieve, J.-M. Conan, B. Emica, M. Paques, and K. Irsch, “Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology,” Appl. Opt. 56(9), D66–D71 (2017).
[Crossref]

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Paques., M.

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

Pascual, D.

Paterson, C.

Perret, D.

G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
[Crossref] [PubMed]

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Petit, C.

S. Meimon, J. Jarosz, C. Petit, E. G. Salas, K. Grieve, J.-M. Conan, B. Emica, M. Paques, and K. Irsch, “Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology,” Appl. Opt. 56(9), D66–D71 (2017).
[Crossref]

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
[Crossref] [PubMed]

Pflibsen, K. P.

Porter, J.

Prieto, P.

Pudasaini, G.

Puget, P.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Qu, J.

Raynaud, H. F.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Raynaud, H.-F.

Rha, J.

Rigaut, F.

F. Rigaut and E. Gendron, “Laser guide star in adaptive optics - The tilt determination problem,” Astron. Astrophys. 261(2), 677–684 (1992).

Ripken, T.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

Rochat, S.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Roddier, F.

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
[Crossref]

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Rousset, G.

Salas, E. G.

Salasnich, B.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Salmon, T. O.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref]

Sauvage, J. F.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Sevin, A.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
[Crossref] [PubMed]

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Singer, B.

Sivo, G.

Soenke, C.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Suarez, M.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Sulai, Y.

Talbot, G.

Thibos, L.

C. Coe, A. Bradley, and L. Thibos, “Polychromatic refractive error from monochromatic wavefront aberrometry,” Optom. Vision Sci. 91(10), 1167–1174 (2014).
[Crossref]

Thibos, L. N.

Thorn, K. E.

Tiruveedhula, P.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Todd, S.

Torti, C.

van de Kraats, J.

J. van de Kraats and D. van Norren, “Directional and nondirectional spectral reflection from the human fovea,” J. Biomed. Opt. 13(2), 024010 (2008).
[Crossref] [PubMed]

van de Pol, C.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref]

van Norren, D.

J. van de Kraats and D. van Norren, “Directional and nondirectional spectral reflection from the human fovea,” J. Biomed. Opt. 13(2), 024010 (2008).
[Crossref] [PubMed]

Viard, C.

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

Vidal, F.

Vigan, A.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Vinas, M.

Wang, X.

Werner, J. S.

Wheeler, W.

L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74(6), 367–375 (1997).
[Crossref]

Wildi, F.

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

Williams, D. R.

Yamauchi, Y.

Ye, M.

Yoon, G.

Yoon, G.-Y.

Younger, E.

Yu, Y.

Zabic, M.

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Zawadzki, R. J.

Zhang, T.

Zhang, X.

Zhang, Y.

Appl. Opt. (4)

Astron. Astrophys. (1)

F. Rigaut and E. Gendron, “Laser guide star in adaptive optics - The tilt determination problem,” Astron. Astrophys. 261(2), 677–684 (1992).

Biomed. Opt. Express (4)

Cataract Refract. Surg. (1)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref]

Investig. Ophthalmol. Vis. Sci. (1)

S. Meimon, C. Petit, J. Jarosz, P. B. Mecê, and M. Paques., “PARIS’s High speed Adaptive Optics flood illumination ophthalmoscope, ” Investig. Ophthalmol. Vis. Sci. 57(12), 4639 (2016).

J. Biomed. Opt. (1)

J. van de Kraats and D. van Norren, “Directional and nondirectional spectral reflection from the human fovea,” J. Biomed. Opt. 13(2), 024010 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Nat. Neurosci. (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving Single Cone Inputs to Visual Receptive Fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

W. N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthalmic Physiol. Opt. 8(2), 153–163 (1988).
[Crossref] [PubMed]

Opt. Express (8)

J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an Adaptive Optics Optical Coherence Tomography System,” Opt. Express 17(16), 13768–13784 (2009).
[Crossref] [PubMed]

C. Leahy and C. Dainty, “A non-stationary model for simulating the dynamics of ocular aberrations,” Opt. Express 18(20), 21386–21396 (2010).
[Crossref] [PubMed]

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23(18), 23035–23052 (2015).
[Crossref] [PubMed]

G. Sivo, C. Kulcsár, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, “First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder,” Opt. Express 22(19), 23565–23591 (2014).
[Crossref] [PubMed]

H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref] [PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003).
[Crossref] [PubMed]

T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11(21), 2704–2716 (2003).
[Crossref] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Opthal. Physiol. Opt. (1)

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Opthal. Physiol. Opt. 29(3), 256–263 (2009).
[Crossref]

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Optom. Vision Sci. (2)

L. N. Thibos, W. Wheeler, and D. Horner, “Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error,” Optom. Vision Sci. 74(6), 367–375 (1997).
[Crossref]

C. Coe, A. Bradley, and L. Thibos, “Polychromatic refractive error from monochromatic wavefront aberrometry,” Optom. Vision Sci. 91(10), 1167–1174 (2014).
[Crossref]

Proc. SPIE (4)

C. Viard, K. Nakashima, B. Lamory, M. Paques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood-illumination adaptive optics retinal camera,” Proc. SPIE 7885, 788509 (2011).
[Crossref]

A. Krüger, A. Hansen, B. Matthias, and T. Ripken, “Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping,” Proc. SPIE 8935, 89350L (2014).
[Crossref]

C. Petit, J. F. Sauvage, T. Fusco, A. Sevin, M. Suarez, A. Costille, A. Vigan, C. Soenke, D. Perret, S. Rochat, A. Baruffolo, B. Salasnich, J. L. Beuzit, K. Dohlen, D. Mouillet, P. Puget, F. Wildi, M. Kasper, J.-M. Conan, C. Kulcsar, and H. F. Raynaud, “SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system,” Proc. SPIE 9148, 91480O (2014).

B. Matthias, D. Brockmann, A. Hansen, K. Horke, G. Knoop, T. Gewohn, M. Zabic, A. Krüger, and T. Ripken, “Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning,” Proc. SPIE 9307, 93070Z (2015).
[Crossref]

Other (3)

G. Rousset, “Wave-front sensors,” in Adaptive Optics in Astronomy (Cambridge University Press, 1999).
[Crossref]

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
[Crossref]

N. Doble and D. T. Miller, “Wavefront correctors for vision science,” In Adaptive Optics for Vision Science, J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds. (Wiley-Interscience, 2006).

Supplementary Material (1)

NameDescription
» Data File 1: CSV (205 KB)      Data supporting the plots of all the paper

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic drawing of the experimental set-up, comprising a Reference Unit (used to acquire the reference wavefront), an Injection Unit creating a point source on the retina and an Analysis Unit with a custom-made Shack-Hartmann Wavefront Sensor (SH WFS), in parallel with a pupil camera.(L: lens - associated focal lengths are reported on the schematic drawing, BS: beam splitter, M: mirror). All pupil planes (marked with P) are optically conjugated.
Fig. 2
Fig. 2 Description of the 50-eye population regarding (a) age, (b) spherical equivalent, (c) cylindrical component J0, (d) cylindrical component J45. Spherical equivalent and cylindrical components were taken from the spectacle prescription of our population.
Fig. 3
Fig. 3 Zernike polynomials Zi from the 2nd to the 4th radial order ordered according to Noll’s convention by increasing radial order n (the degree of the polynomial) and increasing azimuthal frequency m (the number of cycles of the sinusoidal function) with odd indexes i indicating the Zernike function is in sine phase and even indexes indicating the Zernike function is in cosine phase.
Fig. 4
Fig. 4 Distribution of the static part of the aberrations over the population for a 5-mm diameter pupil. (a) Zernike coefficients from the 2nd to the 8th radial order over the 50-eye subpopulation. Symbols indicate mean values of a i ¯ and error bars plus and minus one standard deviation from the mean values. (b) Contribution of each radial order to the total static SWFE. Symbols indicate mean values of i n th radial order ( a i ¯ ( eye ) ) 2 and error bars plus one standard deviation from the mean values.
Fig. 5
Fig. 5 Experimental example of temporal series of Zernike coefficients from the 2nd to the 4th radial order on one eye across a 5-mm diameter pupil during a 3.4-second-long sequence. Modes are attributed different colors and are specified beside the traces. The traces have been vertically shifted for clarity. As a consequence, mean values do not represent static aberrations. (a) Second-order dynamic aberrations (a4, a5, a6). (b) Third-order dynamic aberrations (a7, a8, a9, a10). (c) Fourth-order dynamic aberrations (a11, a12, a13, a14, a15).
Fig. 6
Fig. 6 Distribution of the dynamic part of the aberrations over the population. (a) Zernike coefficients from the 2nd to the 8th radial order over the population across a 5-mm diameter pupil. Symbols indicate mean values of σt (ai (eye)) and error bars indicate plus and minus one standard deviation (over the population) from the mean values. (b) Contribution of each radial order to the total dynamic SWFE for a 5-mm diameter pupil. Symbols indicate mean values of i n th radial order ( σ t ( a i ( eye ) ) ) 2 and error bars indicate plus one standard deviation from the mean values. A linear fit, represented by the solid line, models the dynamic SWFE by a n−2 power-law.
Fig. 7
Fig. 7 Power-law model of the temporal PSD of the aberration time series. (a) PSD of vertical coma (a7) measured on a real eye, in blue. The solid line indicates the power-law regression fpi. The dotted straight line indicates the theoretical noise level (see Sect. 4.1 for details). The dashed straight line indicates the experimental high-frequency plateau of the temporal spectrum. For information, the level of local turbulence in the optical bench is given in green (corresponding to an acquisition at high flux on an artificial eye).(b) Distribution of the power-law exponent for each Zernike mode i up to the 8th order over the population for a 5-mm diameter pupil. Symbols indicate mean values of −pi and error bars plus and minus one standard deviation from the mean values.
Fig. 8
Fig. 8 Fitting error in terms of SWFE as a function of the number of corrected Zernike modes Ncorrected (e.g., Ncorrected = 3 corresponds to the case where defocus, vertical and oblique astigmatisms are corrected) for various portions of the population corrected. For one eye, the total fitting error is calculated as: SWFE fitting = uncorrected modes ( a i ¯ ) 2 + uncorrected modes ( σ t ( a i res ) ) 2, with the first term corresponding to the static part of the fitting error, represented by solid lines on the graph, and the second term corresponding to the dynamic part, represented by dashed lines on the graph.
Fig. 9
Fig. 9 Temporal error SWFEtemporal as a function of the sampling frequency fs for various portions of the population corrected. For each eye, the temporal error is calculated as SWFE temporal = i = 1 N corrected ( σ t ( a i res ) ) 2. The temporal fitting error is shown in solid lines for a 0.5 loop gain and in dashed lines for a 0.1 loop gain. Symbols at 0 Hz indicate the dynamic SWFE obtained without any correction. (a) For a number of corrected Zernike modes Ncorrected of 18 (i.e., up to the 5th radial order). (b) For a number of corrected Zernike modes Ncorrected of 42 (i.e., up to the 8th radial order). Zernike modes piston, tip and tilt were excluded.
Fig. 10
Fig. 10 Example of Shack-Hartmann wavefront sensor image for one typical eye.

Tables (1)

Tables Icon

Table 1 Repartition over the population of the dynamic SWFE and associated Strehl ratio (SR). Strehl ratios are computed at 833 nm as : SR = exp ( 4 π 2 λ 2 SWFE dyn ).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

{ a i ( t , eye ) } = M W F S ( P analysis ) S ( t , eye ) ,
W ( t , eye ) = i = 4 45 a i ( t , eye ) Z i ,
SWFE = i a i 2 ¯ = i a i ¯ 2 SWFE stat + i ( σ t ( a i ) ) 2 SWFE dyn .
SWFE WFS = SWFE aliasing + SWFE noise + SWFE NCPA .
SWFE WFS = SWFE noise dyn 2.0 × 10 4 μ m 2 + SWFE NCPA stat 1.5 × 10 3 μ m 2 .
SWFE res = SWFE fitting + SWFE temporal + SWFE noise + SWFE aliasing + SWFE NCPA ref SWFE WFS ,
{ σ ph spot 2 = 4 π 2 ( ln 2 ) λ 2 1 R dir 1 τ N ph inc S spot σ ph bg 2 = 32 π 2 3 λ 2 ρ b g R dir 2 1 τ N ph inc S spot 2
N ph 100 % = Ω 2 π T N ph inc
N ph tot = R tot N ph 100 % = R dir N ph 100 % N ph dir + R b g N ph 100 % N ph bg
N ph bg = S field R b g S b g ρ bg N ph 100 %
N ph WFS = τ bench [ R dir + S field + ρ b g ] R tot Ω μ L 2 π T N ph inc
R tot ( 1.2 ° ) = 5.0 % ; R dir = 3.7 % ; ρ b g = 1.3 × 10 7 μ m 2

Metrics