Abstract

Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Portable simultaneous vision device to simulate multifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Jose Ramon Alonso-Sanz, Daniel Pascual, Miriam Velasco-Ocana, Pablo Perez-Merino, and Susana Marcos
Optica 3(8) 918-924 (2016)

Perceived image quality with simulated segmented bifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Pablo de Gracia, Lucie Sawides, and Susana Marcos
Biomed. Opt. Express 7(11) 4388-4399 (2016)

Temporal multiplexing with adaptive optics for simultaneous vision

Eleni Papadatou, Antonio J. Del Águila-Carrasco, Iván Marín-Franch, and Norberto López-Gil
Biomed. Opt. Express 7(10) 4102-4113 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Dou and M. K. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20(14), 1583–1585 (1995).
    [Crossref] [PubMed]
  2. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [Crossref] [PubMed]
  3. R. Martínez-Cuenca, V. Durán, J. Arines, J. Ares, Z. Jaroszewicz, S. Bará, L. Martínez-León, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett. 36(18), 3702–3704 (2011).
    [Crossref] [PubMed]
  4. Z. Y. Zhang and Z Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
  5. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
    [Crossref] [PubMed]
  6. L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
    [Crossref] [PubMed]
  7. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
    [Crossref] [PubMed]
  8. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
    [Crossref] [PubMed]
  9. M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
    [PubMed]
  10. J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
    [Crossref] [PubMed]
  11. C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
    [Crossref] [PubMed]
  12. S. Manzanera and P. Artal, “Minimum change in spherical aberration that can be perceived,” Biomed. Opt. Express 7(9), 3471–3477 (2016).
    [Crossref] [PubMed]
  13. L. Zhao, N. Bai, X. Li, L. S. Ong, Z. P. Fang, and A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45(1), 90–94 (2006).
    [Crossref] [PubMed]
  14. A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refract. Surg. 42(9), 1276–1287 (2016).
    [Crossref] [PubMed]
  15. C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with different experimentally simulated segmented bifocal corrections,” Biomed. Opt. Express 7, 4388–4399 (2016).
    [Crossref] [PubMed]
  16. E. LaVilla, M. Vinas, S. Marcos, and J. Schwiegerling, “Freeform Design of Multifocal Zone Plates,” in Imaging and Applied Optics 2015, OSA Technical Digest, ed. (Optical Society of America, 2015).
  17. P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
    [Crossref] [PubMed]
  18. D. G. Voelz, “Computational fourier optics: a MATLAB tutorial,” (SPIE, 2011).
  19. H. S. Abdul-Rahman, M. A. Gdeisat, D. R. Burton, M. J. Lalor, F. Lilley, and C. J. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46(26), 6623–6635 (2007).
    [Crossref] [PubMed]
  20. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
    [Crossref] [PubMed]
  21. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  22. M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
    [Crossref] [PubMed]
  23. P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
    [Crossref] [PubMed]
  24. A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
    [Crossref] [PubMed]
  25. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
    [Crossref]
  26. L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
    [Crossref] [PubMed]
  27. W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern Techniques in Neuroscience Research, U. Windhorst, and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.
  28. D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
    [Crossref] [PubMed]
  29. J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13(4), 388–391 (1997).
    [PubMed]
  30. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
    [Crossref] [PubMed]
  31. D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
    [Crossref] [PubMed]
  32. L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
    [Crossref] [PubMed]

2016 (5)

2015 (2)

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

2014 (3)

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Z. Y. Zhang and Z Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).

2013 (1)

2012 (1)

P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
[Crossref] [PubMed]

2011 (2)

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

R. Martínez-Cuenca, V. Durán, J. Arines, J. Ares, Z. Jaroszewicz, S. Bará, L. Martínez-León, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett. 36(18), 3702–3704 (2011).
[Crossref] [PubMed]

2010 (1)

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (2)

2006 (2)

2005 (1)

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

2004 (2)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
[Crossref] [PubMed]

P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004).
[Crossref] [PubMed]

1998 (1)

1997 (4)

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref] [PubMed]

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
[Crossref] [PubMed]

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13(4), 388–391 (1997).
[PubMed]

1995 (1)

Abdul-Rahman, H. S.

Alonso-Sanz, J. R.

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
[Crossref] [PubMed]

Ares, J.

Arines, J.

Artal, P.

Asundi, A. K.

Ayala, D. B.

Bai, N.

Bará, S.

Bradley, A.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref] [PubMed]

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Burton, D. R.

Cánovas, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Chen, L.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

Chu, Z

Z. Y. Zhang and Z Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).

Cortes, D.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

de Gracia, P.

Dorronsoro, C.

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with different experimentally simulated segmented bifocal corrections,” Biomed. Opt. Express 7, 4388–4399 (2016).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refract. Surg. 42(9), 1276–1287 (2016).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

Dou, R.

Durán, V.

Fang, Z. P.

Fernández, E.

Fernández, E. J.

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

Garzón, N.

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

Gdeisat, M. A.

Giles, M. K.

Gonzalez, V.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

Guirao, A.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

Holladay, J. T.

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13(4), 388–391 (1997).
[PubMed]

Iskander, D. R.

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
[Crossref] [PubMed]

Jansen, M. E.

P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
[Crossref] [PubMed]

Jaroszewicz, Z.

Kollbaum, P. S.

P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
[Crossref] [PubMed]

Lalor, M. J.

Lancis, J.

Li, X.

Lilley, F.

Lindacher, J. M.

Love, G. D.

Manzanera, S.

Marcos, S.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refract. Surg. 42(9), 1276–1287 (2016).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with different experimentally simulated segmented bifocal corrections,” Biomed. Opt. Express 7, 4388–4399 (2016).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, and S. Marcos, “Multiple zone multifocal phase designs,” Opt. Lett. 38(18), 3526–3529 (2013).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17(17), 15292–15307 (2009).
[Crossref] [PubMed]

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
[Crossref] [PubMed]

Martínez-Cuenca, R.

Martínez-León, L.

Merayo-Lloves, J.

Moore, C. J.

Ong, L. S.

Pascual, D.

Perez-Merino, P.

Piers, P.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Porter, J.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

Poyales, F.

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

Prieto, P.

Prieto, P. M.

Radhakrishnan, A.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refract. Surg. 42(9), 1276–1287 (2016).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with different experimentally simulated segmented bifocal corrections,” Biomed. Opt. Express 7, 4388–4399 (2016).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

Ravikumar, S.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Remon, L.

Rickert, M. E.

P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
[Crossref] [PubMed]

Sawides, L.

C. Dorronsoro, A. Radhakrishnan, P. de Gracia, L. Sawides, and S. Marcos, “Perceived image quality with different experimentally simulated segmented bifocal corrections,” Biomed. Opt. Express 7, 4388–4399 (2016).
[Crossref] [PubMed]

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

Singer, B.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

Tabernero, J.

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

Thibos, L.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
[Crossref] [PubMed]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref] [PubMed]

Vargas-Martín, F.

Velasco-Ocana, M.

Vinas, M.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

Webster, M.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Weeber, H.

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Williams, D. R.

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

Zhang, Z. Y.

Z. Y. Zhang and Z Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).

Zhao, L.

Appl. Opt. (3)

Biomed. Opt. Express (3)

Cont. Lens Anterior Eye (1)

P. S. Kollbaum, M. E. Jansen, and M. E. Rickert, “Comparison of patient-reported visual outcome methods to quantify the perceptual effects of defocus,” Cont. Lens Anterior Eye 35(5), 213–221 (2012).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Tabernero, C. Schwarz, E. J. Fernández, and P. Artal, “Binocular visual simulation of a corneal inlay to increase depth of focus,” Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

A. Radhakrishnan, C. Dorronsoro, and S. Marcos, “Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design,” J. Cataract Refract. Surg. 42(9), 1276–1287 (2016).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, N. Garzón, F. Poyales, and S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses,” J. Cataract Refract. Surg. 41(10), 2115–2124 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

J. T. Holladay, “Proper method for calculating average visual acuity,” J. Refract. Surg. 13(4), 388–391 (1997).
[PubMed]

J. Vis. (3)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vis. 4(4), 8 (2004).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

C. Schwarz, C. Cánovas, S. Manzanera, H. Weeber, P. M. Prieto, P. Piers, and P. Artal, “Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light,” J. Vis. 14(2), 8 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

Z. Y. Zhang and Z Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Optom. Vis. Sci. (3)

L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vis. Sci. 82(5), 358–369 (2005).
[Crossref] [PubMed]

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
[Crossref] [PubMed]

L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74(7), 581–587 (1997).
[Crossref] [PubMed]

PLoS One (1)

A. Radhakrishnan, C. Dorronsoro, L. Sawides, and S. Marcos, “Short-term neural adaptation to simultaneous bifocal images,” PLoS One 9(3), e93089 (2014).
[Crossref] [PubMed]

Spat. Vis. (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spat. Vis. 10(4), 433–436 (1997).
[Crossref] [PubMed]

Vision Res. (1)

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 16, S00426989 (2016).
[PubMed]

Other (3)

D. G. Voelz, “Computational fourier optics: a MATLAB tutorial,” (SPIE, 2011).

E. LaVilla, M. Vinas, S. Marcos, and J. Schwiegerling, “Freeform Design of Multifocal Zone Plates,” in Imaging and Applied Optics 2015, OSA Technical Digest, ed. (Optical Society of America, 2015).

W. H. Ehrenstein and A. Ehrenstein, “Psychophysical methods,” in Modern Techniques in Neuroscience Research, U. Windhorst, and H. Johansson, eds. (Springer, 1999), pp. 1211–1240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Custom-made polychromatic adaptive-optics setup. Schematic diagram of the VioBio Lab AO II system with the different channels in its current configuration (November, 2015): the Illumination-Channel (red line), the AO-Channel (green line); the SLM-Channel (yellow line); the Testing-Channel (blue line); the Psychophysical-Channel (orange line) and the Pupil Monitoring-Channel (purple line). NIR: near infrared light; VIS: visible light; RP: retinal plane; PP: pupil plane; BS: beam splitter; S: shutter; L: lens; M: mirror; HM: hot mirror; POL: polarizer; E-RP: retinal pinhole; AP-PP: artificial pupil; VS-P: variable size pupil.

Fig. 2
Fig. 2

(a) 2ANG lathe-manufactured phase plate (top) and its corresponding lathe-manufactured surface profile (bottom, measured with non-contact profilometry) for far (green) and near distance (blue). (b) Areas of the different lathe-manufactured phase plate for far (green solid bars), intermediate-3-segmented (red solid bars), intermediate-4segmented (red dashed bars), and near distance (blue solid bars) and for the nominal areas of those designs (black dashed bars). Error bars stand for experimental error during measurements with the profilometer. (c) Dioptric power of the different optical zones of the lathe-manufactured phase plate for far, near, intermediate for 3-segmented and intermediate for 4-segmented (yellow bars) and their corresponding nominal values (black bars). Error bars stand for experimental error during measurements with the profilometer. (d) Phase map obtained from profilometric measurements of an example surface-modulated plate (4ANG); (e) Intended phase map for 4ANG in the SLM (before wrapping); (f) Wrapped phase map in the SLM; (g) Measured phase map induced by the SLM (composite from Hartmann Shack measurements of equivalent pure defocus phase maps). Color bar scale is in microns. Data are for 6-mm pupil diameter.

Fig. 3
Fig. 3

(a) Example of the through-focus image series obtained for 3ANG design in the form of lathe-manufactured surface (upper row) and SLM-simulated phase map (lower row). (b) Corresponding through-focus optical quality (image correlation metric) for those two series of images (blue for lathe-manufactured surface and green for SLM-simulated phase map). (c) Through-focus optical quality (image correlation metric) for all 6 designs with surfaces-modulated plates. (d) Through-focus optical quality (image correlation metric) for all 6 designs with SLM-simulated phase maps. Data are for 6-mm pupil diameter.

Fig. 4
Fig. 4

Perceptual scoring with each multifocal pattern from all 5 subjects for far (green), intermediate (red) and near (blue) distance with (a) lathe-manufactured surfaces and (b) SLM-simulated phase maps. (c) Correlations between perceptual scores for lathe-manufactured surfaces and SLM-simulated phase maps for all subjects. Statistically significant correlations (*p < 0.05; **p<0.005) are noted in each graph.

Fig. 5
Fig. 5

Correlation between the relative perceived visual quality results obtained with the SLM-simulated phase maps and the lathe-manufactured surfaces for all subjects and all designs (left), all angular designs (middle) and all radial designs (right) for far (green), intermediate (red) and near (blue) distance, and calculated orthogonal regression (solid lines). Statistically significant orthogonal correlations (*p < 0.05; **p<0.005) are noted in each graph.

Fig. 6
Fig. 6

Average relative perceived visual quality (perceptual scoring) with lathe-manufactured surfaces (solid bars) and SLM-simulated phase maps (dashed bars) for far (green), intermediate (red) and near (blue) and their corresponding difference (black bars). Data average data across 5 subjects, for 6-mm pupils and AO-correction of the HOAs of the subjects. Error bars stand for standard deviation across subjects.

Fig. 7
Fig. 7

Average rankings of multifocal patterns for the 3 testing distances (far: green, intermediate: red and near: blue) from experimental results from lathe-manufactured surfaces (squares), SLM-simulated phase maps (triangles) and optical predictions (circles), and from on-bench measurements from lathe-manufactured surfaces (dashed black squares) and from phase maps (dashed black triangles). Error bars stand for standard deviation across subjects.

Fig. 8
Fig. 8

Average decimal visual acuity (VA) for all 5 subjects and all designs with lathe-manufactured surfaces (solid bars) and SLM-phase maps (dashed bars) and for far (green bars) and near (blue) distance. Error bars stand for standard deviation across subjects.

Metrics