Abstract

In this work, we used a short coherence digital holographic microscopy system to demonstrate cross-talk noise suppression and imaging performance enhancement by optical clearing. Performance of the system on both phantom and in vitro porcine skin tissues before and after the treatment of 70% v./v. glycerol-saline solution was investigated. Our results showed that optical clearing effectively inhibits the cross-talk noise and improves the image quality in the deep of the in vitro porcine skin tissues. The imaging depth was increased by about 30% after topical application of the glycerol-saline solution for 30 min.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of optical clearing with the combined liquid paraffin and glycerol mixture

Jingyi Wang, Yanmei Liang, Shu Zhang, Yueqiao Zhou, Haiyang Ni, and Yan Li
Biomed. Opt. Express 2(8) 2329-2338 (2011)

Optical clearing in photoacoustic flow cytometry

Yulian A. Menyaev, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Mazen A. Juratli, Ekaterina I. Galanzha, Valery V. Tuchin, and Vladimir P. Zharov
Biomed. Opt. Express 4(12) 3030-3041 (2013)

Time-domain optical coherence tomography with digital holographic microscopy

Pia Massatsch, Florian Charrière, Etienne Cuche, Pierre Marquet, and Christian D. Depeursinge
Appl. Opt. 44(10) 1806-1812 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  3. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
    [Crossref] [PubMed]
  4. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [Crossref] [PubMed]
  5. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  6. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
    [Crossref] [PubMed]
  7. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref] [PubMed]
  8. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
    [Crossref]
  9. A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18(8), 1972–1979 (2001).
    [Crossref] [PubMed]
  10. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
    [Crossref] [PubMed]
  11. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [Crossref] [PubMed]
  12. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
    [Crossref] [PubMed]
  13. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [Crossref] [PubMed]
  14. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44(19), 3977–3984 (2005).
    [Crossref] [PubMed]
  15. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [Crossref] [PubMed]
  16. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  17. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
    [Crossref] [PubMed]
  18. K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
    [Crossref]
  19. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
    [Crossref] [PubMed]
  20. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
    [Crossref] [PubMed]
  21. R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
    [Crossref] [PubMed]
  22. R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
    [Crossref]
  23. Y. Ding, J. Wang, Z. Fan, D. Wei, R. Shi, Q. Luo, D. Zhu, and X. Wei, “Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents,” Biomed. Opt. Express 4(11), 2518–2526 (2013).
    [Crossref] [PubMed]
  24. R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005).
    [Crossref] [PubMed]
  25. O. Nadiarnykh and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17(7), 5794–5806 (2009).
    [Crossref] [PubMed]
  26. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
    [Crossref] [PubMed]
  27. Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
    [Crossref] [PubMed]
  28. A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
    [Crossref] [PubMed]
  29. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref] [PubMed]
  30. D. L. Marks, B. J. Davis, S. A. Boppart, and P. Scott Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
    [Crossref] [PubMed]
  31. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31(10), 1370–1376 (1992).
    [Crossref] [PubMed]
  32. C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
    [Crossref] [PubMed]
  33. Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
    [Crossref] [PubMed]
  34. M. Xu, “Scattering-phase theorem: anomalous diffraction by forward-peaked scattering media,” Opt. Express 19(22), 21643–21651 (2011).
    [Crossref] [PubMed]
  35. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
    [Crossref] [PubMed]
  36. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
    [Crossref] [PubMed]
  37. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref] [PubMed]
  38. Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
    [Crossref]
  39. H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, “Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm,” J. Opt. Soc. Am. A 22(6), 1151–1157 (2005).
    [Crossref] [PubMed]
  40. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
    [Crossref]
  41. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).
    [Crossref] [PubMed]
  42. Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9(1), 200–206 (2004).
    [Crossref] [PubMed]
  43. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [Crossref] [PubMed]
  44. L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
    [Crossref] [PubMed]

2016 (1)

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (3)

2012 (1)

2011 (4)

2010 (2)

2009 (4)

2007 (5)

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (6)

2004 (2)

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref] [PubMed]

Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9(1), 200–206 (2004).
[Crossref] [PubMed]

2002 (3)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
[Crossref] [PubMed]

2001 (2)

1997 (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

1995 (1)

1993 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

Aarnoudse, J. G.

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Bagnato, V.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Beaurepaire, E.

Becker, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Boccara, A.-C.

Bonin, T.

Bonner, R. F.

Boppart, S. A.

Bouma, B. E.

Bourquin, S.

Brezinski, M. E.

Callens, N.

Campagnola, P. J.

Carney, P. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charrière, F.

Chen, M.

Chen, Z.

Cicchi, R.

Cuche, E.

Dai, X. S.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Davis, B. J.

de Mul, F. F. M.

Deininger, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Demidov, V.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Depeursinge, C. D.

Deussing, J. M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Dhalla, A. H.

Diller, K. R.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Ding, H.

Ding, Y.

Dodt, H. U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Dubois, A.

Dubois, F.

Eder, M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Elder, J. B.

Fan, Z.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Franke, G.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Graaff, R.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Greve, J.

Guo, S.

Hagen-Eggert, M.

He, Y.

Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9(1), 200–206 (2004).
[Crossref] [PubMed]

He, Y. H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hillmann, D.

Hu, X. H.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hüttmann, G.

Izatt, J. A.

Jacobs, K. M.

Jährling, N.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Jeong, K.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
[Crossref]

Ji, Y. H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Juptner, W.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Karamata, B.

Kemp, N. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Kemper, B.

Kim, M. K.

Knüttel, A.

Koch, P.

Koelink, M. H.

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Kurachi, C.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Lambelet, P.

Langehanenberg, P.

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Lasser, T.

Laubscher, M.

Leischner, U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Leutenegger, M.

Li, P.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lu, J. Q.

Lührs, C.

Luo, Q.

Ma, H.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Maksimova, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Marks, D. L.

Marquet, P.

Martínez-León, L.

Massatsch, P.

Massi, D.

Mauch, C. P.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Mavlyutov, A. H.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Melloch, M. R.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
[Crossref]

Mendenhall, J. M.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Migacz, J. V.

Milner, T. E.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Nadiarnykh, O.

Nolte, D. D.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
[Crossref]

Osten, W.

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

Pavone, F.

Pedrini, G.

Pires, L.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Popescu, G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ralston, T. S.

Rao, B.

Remmersmann, C.

Rylander, C. G.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Salathé, R. P.

Sampson, D.

Sarunic, M. V.

Schierloh, A.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Schmitt, J. M.

Schnars, U.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Schockaert, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scott Carney, P.

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Shen, Z. Y.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Shi, R.

Sloot, P. M. A.

Southern, J. F.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stumpp, O. F.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Stürwald, S.

Su, J.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Tuchin, V. V.

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[Crossref]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Turek, J. J.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
[Crossref]

Vabre, L.

Vitkin, I. A.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

von Bally, G.

Wang, J.

Wang, L. V.

Wang, M.

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Wang, Q.

Wang, R. K.

Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9(1), 200–206 (2004).
[Crossref] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

R. K. Wang, X. Xu, V. V. Tuchin, and J. B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents,” J. Opt. Soc. Am. B 18(7), 948–953 (2001).
[Crossref]

Wang, Z.

Wei, D.

Wei, X.

Weinberg, S.

Welch, A. J.

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

Wilson, B. C.

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Xu, M.

Xu, X.

Yao, J.

Yourassowsky, C.

Yu, L.

Zhang, J.

Zhou, Y.

Zhu, D.

Zieglgänsberger, W.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Zijp, J. R.

Zimnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

Appl. Opt. (6)

Appl. Phys. B (1)

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Multiple-scattering speckle in holographic optical coherence imaging,” Appl. Phys. B 95(3), 617–625 (2009).
[Crossref]

Appl. Phys. Lett. (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Biomed. Opt. Express (2)

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

J. Biomed. Opt. (4)

L. Pires, V. Demidov, I. A. Vitkin, V. Bagnato, C. Kurachi, and B. C. Wilson, “Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography,” J. Biomed. Opt. 21(8), 081210 (2016).
[Crossref] [PubMed]

Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt. 9(1), 200–206 (2004).
[Crossref] [PubMed]

C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, “Dehydration mechanism of optical clearing in tissue,” J. Biomed. Opt. 11(4), 041117 (2006).
[Crossref] [PubMed]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2(4), 401–417 (1997).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (6)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

Z. Y. Shen, M. Wang, Y. H. Ji, Y. H. He, X. S. Dai, P. Li, and H. Ma, “Transverse flow velocity quantification using optical coherence tomography with correlation,” Laser Phys. Lett. 8(4), 318–323 (2011).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Nat. Methods (1)

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (9)

Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
[Crossref] [PubMed]

A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
[Crossref] [PubMed]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
[Crossref] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[Crossref] [PubMed]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy-holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the on-axis phase shifting SCDHM system. SLD, superluminescent diode; SMF, single-mode fiber; CL, collimator; NDF, neutral density filter; L1, L2, achromatic lenses (f1 = 150 mm and f2 = 200 mm); BS, beam splitter; OL1, OL2, objective lenses; RF, reflector; PI, piezo stage; SS, sample stage.
Fig. 2
Fig. 2 Reconstructed intensity images of the phantom. (a) Reconstructed image of the test board covered by no tissue. (b)-(d) Reconstructed images of the test board through a piece of mouse colon without, 1 min. and 5 min. after the topical application of glycerol solution, respectively. (e)-(g) Reconstructed images of one controlled experiment using saline solution for treatment. The field of view of each reconstructed image was 224 × 224 μm2. (h) Averaged results of horizontal lines adjacent to the white marks in (a)-(d) respectively, and (i) that in (a), (e)-(g) respectively. Note that the intensity scale is enlarged due to the accumulation of holograms.
Fig. 3
Fig. 3 Average results of the (a) relative average intensity, (b) relative contrast and (c) normalized correlation peak of the reconstructed intensity images before, 1 min. and 5 min. after the treatment, for both the experimental and control groups. Error bars show the maximum and minimum of different samples.
Fig. 4
Fig. 4 Reconstructed images of the phantom. (a) and (e) are the reconstructed intensity and phase images of the bare test board. (b) and (f), (c) and (g), and (d) and (h) are the reconstructed results through a piece of mouse colon before, 1 min. and 5 min. after topically applying the glycerol solution, respectively. (i) and (l), (j) and (m), and (k) and (n) are the reconstructed results of one controlled experiment correspondingly. The field of view of each reconstructed image was 224 × 224 μm2.
Fig. 5
Fig. 5 Average results of the (a) relative spatial variance of phase D r , and the (b) relative spatial average of phase gradient intensity G r of three zones of the reconstructed phase distributions before, 1 min. and 5 min. after the treatment, for both the experimental and control groups. Bars: average results of the experimental group; crosses: average results of the control group. Error bars show the maximum and minimum of different samples.
Fig. 6
Fig. 6 Intensity images of a piece of porcine skin reconstructed at different depths, with OC treating intervals of 0, 15, 30, 45 and 60 min., respectively. The field of view of each reconstructed image was 484 × 484 μm2. Note that the value limits of the color bar at each depth is adjusted to provide a better presentation.
Fig. 7
Fig. 7 (a) Averaged pseudo A-scans of the porcine skin at OC treating intervals of 0, 15, 30, 45 and 60 min.. (b) Fitting results of the selected portions of the A-scans in (a). (c) The residuals of subtractions of the fitted lines in (b) from the corresponding A-scans in (a). For the situation of 0 min., the value of the red dot line was subtracted from the A-scan before OC. Note that the three subgraphs share the same legend as shown in (a).
Fig. 8
Fig. 8 (a) Averaged contrasts of the reconstructed intensity images against the depth for OC treating intervals of 0, 15, 30, 45 and 60 min.. (b) Averaged relative contrasts of the reconstructed intensity images with OC treating intervals of 15, 30, 45 and 60 min. for three depths. Error bars show the maximum and minimum of different samples.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μ s = 3.28π r 2 ρ 1g ( 2πr λ ) 0.37 ( n s n o 1) 2.09 ,
μ s L= (Δϕ) 2 , g=1- |ϕ | 2 2 k 2 (Δϕ) 2 ,
I r = I treated I initial ,
C r = C treated C initial ,
NCP= ( W covered W orig ) max ( W orig W orig ) max ,
D r = D treated D initial , G r = G treated G initial ,
Residual=ln(1+ cross-talk noise singly-scattered signal ).

Metrics