Abstract

Snapshot hyperspectral imaging augments pixel dwell time and acquisition speeds over existing scanning systems, making it a powerful tool for fluorescence microscopy. While most snapshot systems contain fixed datacube parameters (x,y,λ), our novel snapshot system, called the lenslet array tunable snapshot imaging spectrometer (LATIS), demonstrates tuning its average spectral resolution from 22.66 nm (80x80x22) to 13.94 nm (88x88x46) over 485 to 660 nm. We also describe a fixed LATIS with a datacube of 200x200x27 for larger field-of-view (FOV) imaging. We report <1 sec exposure times and high resolution fluorescence imaging with minimal artifacts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy

Liang Gao, Robert T. Kester, and Tomasz S. Tkaczyk
Opt. Express 17(15) 12293-12308 (2009)

Depth-resolved image mapping spectrometer (IMS) with structured illumination

Liang Gao, Noah Bedard, Nathan Hagen, Robert T. Kester, and Tomasz S. Tkaczyk
Opt. Express 19(18) 17439-17452 (2011)

Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk
Opt. Express 18(14) 14330-14344 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
    [Crossref] [PubMed]
  2. D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
    [Crossref] [PubMed]
  3. A. Pietraszewska-Bogiel and T. W. Gadella, “FRET microscopy: from principle to routine technology in cell biology,” J. Microsc. 241(2), 111–118 (2011).
    [Crossref] [PubMed]
  4. D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
    [Crossref] [PubMed]
  5. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
    [Crossref] [PubMed]
  6. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [Crossref] [PubMed]
  7. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 245-265 (2005).
    [Crossref]
  8. V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
    [Crossref] [PubMed]
  9. W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
    [Crossref] [PubMed]
  10. M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291 (2006).
    [Crossref] [PubMed]
  11. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
    [Crossref] [PubMed]
  12. D. K. Toomre, M. F. Langhorst, and M. W. Davidson, “Introduction to Spinning Disk Confocal Microscopy,” http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html .
  13. P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
    [Crossref] [PubMed]
  14. P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytometry A 69(8), 835–841 (2006).
    [Crossref] [PubMed]
  15. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  16. W. B. Sparks and H. C. Ford, “Imaging spectroscopy for extrasolar planet detection,” Astrophys. J. 578(1), 543–564 (2002).
    [Crossref]
  17. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
    [Crossref]
  18. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  19. A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
    [Crossref] [PubMed]
  20. A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
    [Crossref]
  21. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
    [Crossref] [PubMed]
  22. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
    [Crossref] [PubMed]
  23. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref] [PubMed]
  24. N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
    [Crossref] [PubMed]
  25. B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
    [Crossref] [PubMed]
  26. J. Allington-Smith and R. Content, “Sampling and Background Subtraction in Fiber‐Lenslet Integral Field Spectrographs,” Publ. Astron. Soc. Pac. 110(752), 1216–1234 (1998).
    [Crossref]
  27. G. Courtes, “Le télescope spatial et les grands télescope au sol,” Application de la Photométrie Bidimensionelle à l'Astronomie 1, 241 (1980).
  28. G. Courtes, “An integral field spectrograph (IFS) for large telescopes,” In Instrumentation for Astronomy with Large Optical Telescopes, C.M. Humphries, ed. (Springer, 1982).
  29. G. Courtes, Y. Georgelin, R. Bacon, G. Monnet, and J. Boulesteix, “A New Device for Faint Objects High Resolution Imagery and Bidimensional Spectrography,” In Instrumentation for Ground-Based Optical Astronomy, L.B. Robinson, ed. (Springer, 1988).
  30. R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).
  31. R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
    [Crossref]
  32. D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
    [Crossref]
  33. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
    [Crossref]
  34. A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
    [Crossref]
  35. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
    [Crossref] [PubMed]
  36. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  37. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
    [Crossref] [PubMed]
  38. J. M. Larson, “The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed,” Cytometry A 69(8), 825–834 (2006).
    [Crossref] [PubMed]
  39. A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patent US20060072109 A1 (2006).
  40. R. Bacon, “The integral field spectrograph TIGER: results and prospects,” In IAU Colloq. 149: Tridimensional Optical Spectroscopic Methods in Astrophysics, G. Comte, M. Marcelin, eds. (Astronomical Society of the Pacific, 1995).
  41. D. Bruton, “Color Science,” http://www.midnightkite.com/color.html .
  42. E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
    [Crossref] [PubMed]

2014 (1)

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

2013 (5)

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
[Crossref] [PubMed]

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

2012 (4)

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

2011 (2)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

A. Pietraszewska-Bogiel and T. W. Gadella, “FRET microscopy: from principle to routine technology in cell biology,” J. Microsc. 241(2), 111–118 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
[Crossref] [PubMed]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

2008 (1)

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

2007 (4)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2006 (3)

P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytometry A 69(8), 835–841 (2006).
[Crossref] [PubMed]

J. M. Larson, “The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed,” Cytometry A 69(8), 825–834 (2006).
[Crossref] [PubMed]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291 (2006).
[Crossref] [PubMed]

2005 (2)

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref] [PubMed]

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

2002 (1)

W. B. Sparks and H. C. Ford, “Imaging spectroscopy for extrasolar planet detection,” Astrophys. J. 578(1), 543–564 (2002).
[Crossref]

2001 (3)

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

1998 (1)

J. Allington-Smith and R. Content, “Sampling and Background Subtraction in Fiber‐Lenslet Integral Field Spectrographs,” Publ. Astron. Soc. Pac. 110(752), 1216–1234 (1998).
[Crossref]

1995 (1)

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

1993 (1)

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

1991 (1)

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Adam, G.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Ai, J.

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

Allington-Smith, J.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

J. Allington-Smith and R. Content, “Sampling and Background Subtraction in Fiber‐Lenslet Integral Field Spectrographs,” Publ. Astron. Soc. Pac. 110(752), 1216–1234 (1998).
[Crossref]

Allington-Smith, J. R.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Bacon, R.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Baird, M. A.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

Baranne, A.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Barnes, C. A.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Bearman, G.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Beaven, S.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Bedard, N.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

Bhattar, V.

Bodkin, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Bureau, M.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Byars, J. M.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Carollo, C. M.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Chawla, M. K.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Chrien, T. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Chudakov, D. M.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref] [PubMed]

Conchello, J. A.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Content, R.

J. Allington-Smith and R. Content, “Sampling and Background Subtraction in Fiber‐Lenslet Integral Field Spectrographs,” Publ. Astron. Soc. Pac. 110(752), 1216–1234 (1998).
[Crossref]

Copin, Y.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Courtes, G.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Cutler, P. J.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Daly, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Davidson, M. W.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

Davies, R. L.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

de Zeeuw, P. T.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Dubet, D.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Dubois, J. P.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Elliott, A. D.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Emsellem, E.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Enmark, H. T.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Ferruit, P.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Fink, W.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Firn, K.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Ford, H. C.

W. B. Sparks and H. C. Ford, “Imaging spectroscopy for extrasolar planet detection,” Astrophys. J. 578(1), 543–564 (2002).
[Crossref]

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Gadella, T. W.

A. Pietraszewska-Bogiel and T. W. Gadella, “FRET microscopy: from principle to routine technology in cell biology,” J. Microsc. 241(2), 111–118 (2011).
[Crossref] [PubMed]

Gao, L.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
[Crossref] [PubMed]

Garner, H. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Georgelin, Y.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Gillenwater, A. M.

Gray, J. W.

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Green, R. O.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Gupta, N.

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

Guzowski, J. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Haaland, D. M.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291 (2006).
[Crossref] [PubMed]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Hamad, S. W.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

Hansen, E. G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Hay, S.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Haynes, R.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Howe, J.

Hu, A.

Humayun, M.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Johnson, W. R.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Jones, H. D.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

Jones, H. D. T.

Kaminski, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Kasili, P. M.

P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytometry A 69(8), 835–841 (2006).
[Crossref] [PubMed]

Kester, R.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Kester, R. T.

Khoobehi, B.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Kuntschner, H.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Kuo, W. L.

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Larson, J. M.

J. M. Larson, “The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed,” Cytometry A 69(8), 825–834 (2006).
[Crossref] [PubMed]

Lee, D.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Lichtman, J. W.

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Lidke, D. S.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Lidke, K. A.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Liu, S.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Lukyanov, K. A.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref] [PubMed]

Lukyanov, S.

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref] [PubMed]

Macdonald, R. L.

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

Malik, M. D.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Mathieu, E.

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

McNaughton, B. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Melgaard, D. K.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

Miller, B. W.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Monnet, G.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Nielsen, T.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Nieman, L. T.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Norton, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Pécontal, E.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Peletier, R. F.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Pietraszewska-Bogiel, A.

A. Pietraszewska-Bogiel and T. W. Gadella, “FRET microscopy: from principle to routine technology in cell biology,” J. Microsc. 241(2), 111–118 (2011).
[Crossref] [PubMed]

Pinkel, D.

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Piston, D. W.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Porter, W. M.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Ren, D.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Richards-Kortum, R.

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Roberts, C.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

Rodebeck, E.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Rousset, A.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Roysam, B.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Ruch, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Sayède, F.

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Schultz, R. A.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Schwarz, R. A.

Sheinis, A.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Sinclair, M. B.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291 (2006).
[Crossref] [PubMed]

Smith, R. T.

Sparks, W. B.

W. B. Sparks and H. C. Ford, “Imaging spectroscopy for extrasolar planet detection,” Astrophys. J. 578(1), 543–564 (2002).
[Crossref]

Sutherland, V. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Timlin, J. A.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45(24), 6283–6291 (2006).
[Crossref] [PubMed]

Tkachuk, D. C.

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Tkaczyk, T. S.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

N. Bedard, R. A. Schwarz, A. Hu, V. Bhattar, J. Howe, M. D. Williams, A. M. Gillenwater, R. Richards-Kortum, and T. S. Tkaczyk, “Multimodal snapshot spectral imaging for oral cancer diagnostics: a pilot study,” Biomed. Opt. Express 4(6), 938–949 (2013).
[Crossref] [PubMed]

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009).
[Crossref] [PubMed]

Ustione, A.

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

Vane, G.

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

Vermaas, W. F.

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

Verolme, E. K.

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Vo-Dinh, T.

P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytometry A 69(8), 835–841 (2006).
[Crossref] [PubMed]

Weier, H. U.

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

Weinheimer, J.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

Williams, M. D.

Wilson, D. W.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Worley, P. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Wyatt, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Yücel, Y. H.

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

Zavaleta, J. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Acta Ophthalmol. (1)

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Astron. Astrophys. Suppl. Ser. (1)

R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, E. Emsellem, P. Ferruit, Y. Georgelin, G. Monnet, E. Pécontal, A. Rousset, and F. Sayède, “3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER,” Astron. Astrophys. Suppl. Ser. 113, 347 (1995).

Astrophys. J. (1)

W. B. Sparks and H. C. Ford, “Imaging spectroscopy for extrasolar planet detection,” Astrophys. J. 578(1), 543–564 (2002).
[Crossref]

Biomed. Opt. Express (2)

Cytometry (1)

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Cytometry A (2)

P. M. Kasili and T. Vo-Dinh, “Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications,” Cytometry A 69(8), 835–841 (2006).
[Crossref] [PubMed]

J. M. Larson, “The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed,” Cytometry A 69(8), 825–834 (2006).
[Crossref] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Fluids Barriers CNS (1)

E. Mathieu, N. Gupta, R. L. Macdonald, J. Ai, and Y. H. Yücel, “In Vivo Imaging of Lymphatic Drainage of Cerebrospinal Fluid in Mouse,” Fluids Barriers CNS 10(1), 35 (2013).
[Crossref] [PubMed]

Genet. Anal. Tech. Appl. (1)

D. C. Tkachuk, D. Pinkel, W. L. Kuo, H. U. Weier, and J. W. Gray, “Clinical applications of fluorescence in situ hybridization,” Genet. Anal. Tech. Appl. 8(2), 67–74 (1991).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16(5), 056005 (2011).
[Crossref] [PubMed]

J. Cell Sci. (1)

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125(20), 4833–4840 (2012).
[Crossref] [PubMed]

J. Microsc. (2)

A. Pietraszewska-Bogiel and T. W. Gadella, “FRET microscopy: from principle to routine technology in cell biology,” J. Microsc. 241(2), 111–118 (2011).
[Crossref] [PubMed]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[Crossref] [PubMed]

Microsc. Microanal. (1)

A. D. Elliott, N. Bedard, A. Ustione, M. A. Baird, M. W. Davidson, T. S. Tkaczyk, and D. W. Piston, “Imaging Live Cell Dynamics using Snapshot Hyperspectral Image Mapping Spectrometry,” Microsc. Microanal. 19(S2), 168–169 (2013).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

R. Bacon, Y. Copin, G. Monnet, B. W. Miller, J. R. Allington-Smith, M. Bureau, C. M. Carollo, R. L. Davies, E. Emsellem, H. Kuntschner, R. F. Peletier, E. K. Verolme, and P. T. de Zeeuw, “The SAURON project–I. The panoramic integral-field spectrograph,” Mon. Not. R. Astron. Soc. 326(1), 23–35 (2001).
[Crossref]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Nat. Methods (1)

J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[Crossref] [PubMed]

Opt. Eng. (2)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

Opt. Express (2)

PASP (1)

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of lenslet arrays for astronomical spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

PLoS One (1)

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-Color Quantum Dot Tracking Using a High-Speed Hyperspectral Line-Scanning Microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer, “Snapshot hyperspectral imaging: the hyperpixel array camera,” Proc. SPIE 7334, 73340H (2009).
[Crossref]

A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer, “Video-rate chemical identification and visualization with snapshot hyperspectral imaging,” Proc. SPIE 8374, 83740C (2012).
[Crossref]

Publ. Astron. Soc. Pac. (1)

J. Allington-Smith and R. Content, “Sampling and Background Subtraction in Fiber‐Lenslet Integral Field Spectrographs,” Publ. Astron. Soc. Pac. 110(752), 1216–1234 (1998).
[Crossref]

Remote Sens. Environ. (1)

G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 44(2–3), 127–143 (1993).
[Crossref]

Trends Biotechnol. (1)

D. M. Chudakov, S. Lukyanov, and K. A. Lukyanov, “Fluorescent proteins as a toolkit for in vivo imaging,” Trends Biotechnol. 23(12), 605–613 (2005).
[Crossref] [PubMed]

Other (8)

T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 245-265 (2005).
[Crossref]

D. K. Toomre, M. F. Langhorst, and M. W. Davidson, “Introduction to Spinning Disk Confocal Microscopy,” http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html .

G. Courtes, “Le télescope spatial et les grands télescope au sol,” Application de la Photométrie Bidimensionelle à l'Astronomie 1, 241 (1980).

G. Courtes, “An integral field spectrograph (IFS) for large telescopes,” In Instrumentation for Astronomy with Large Optical Telescopes, C.M. Humphries, ed. (Springer, 1982).

G. Courtes, Y. Georgelin, R. Bacon, G. Monnet, and J. Boulesteix, “A New Device for Faint Objects High Resolution Imagery and Bidimensional Spectrography,” In Instrumentation for Ground-Based Optical Astronomy, L.B. Robinson, ed. (Springer, 1988).

A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patent US20060072109 A1 (2006).

R. Bacon, “The integral field spectrograph TIGER: results and prospects,” In IAU Colloq. 149: Tridimensional Optical Spectroscopic Methods in Astrophysics, G. Comte, M. Marcelin, eds. (Astronomical Society of the Pacific, 1995).

D. Bruton, “Color Science,” http://www.midnightkite.com/color.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Lenslet array principle as an IFS for microscopy.
Fig. 2
Fig. 2 The tunability principle of LATIS. In this example, sub-pupil images from a hexagonal lenslet array are collimated and refocused onto the detector array. The lenslets are overlaid in grey on top of the dispersed sub-pupils to illustrate the rotation. Adjacent separation is 2 pixels between dispersed sub-pupil images. By changing f coll from f to 1.5f and f focus from f to 2.5f , spectral dispersion increases causing overlap of collinear dispersed sub-pupil images. Adjacent spectra separation is now 3.34 pixels. Rotating the lenslet array by 11° fits spectra on the detector with no spectral overlap and an adjacent spectra separation of 1 pixel.
Fig. 3
Fig. 3 A range of tuning settings in an example LATIS system. Fig. (a). A table of 4 tuning settings based on Eqs. (1) and 2 to demonstrate the effect of focal length change on spectral PSF width. Fig. (b). A plot of the spectral PSF at each tuning setting.
Fig. 4
Fig. 4 Illustrated schematic for LATIS. Fig. (a). Shows a photograph of the system at tuning setting 1. Fig. (b). Shows the schematic of the system. The filter has a bandpass of 485-660 nm to prevent spectral overlap. Red rays represent the longest wavelength passed by the filter. Blue rays represent the shortest wavelength. Only one sub-pupil image is shown to simplify the schematic. The adjustment from tuning setting 1 to 2 is done by changing the focal length of varifocal lens 1 from 20 mm to 30 mm, the focal length of varifocal lens 2 from 50 mm to 100 mm, and the lenslet array rotation from 0° to 11°. The detector is translated axially via a translation stage to refocus dispersed sub-pupil images between tuning settings.
Fig. 5
Fig. 5 Lenslet array mount and the characterization of the lenslet array surface. Fig. (a). Photograph of the lenslet array in the rotation mount. Fig. (b). Photograph of the lenslet array through a stereomicroscope. Missing lenslets and defects can be seen and are easy to spot through the stereomicroscope. Fig. (c). Intensity map of lenslets taken with a white light interferometer. Individual lenslet dents and imperfections can be seen. Fig. (d). The surface profile acquired with the white light interferometer. Due to the lenslet curvature, the surface profile is incomplete for steep portions of the lenslets’ surfaces.
Fig. 6
Fig. 6 Raw unprocessed images of dispersed sub-pupil images acquired with the Retiga EXi. The system is illuminated with a halogen source from the Zeiss AX10. Datacubes for tuning setting 1 and 2 are 80x80x22 and 88x88x46, respectively. Lenslet array defects manifest as missing or obscured dispersed sub-pupil images and are marked with arrows on right hand image.
Fig. 7
Fig. 7 A photograph of the static LATIS system. Changes to optical setup from the previous tunable system are indicated with white arrows. The front optics and the bandpass filter were changed between specimens imaged and are detailed further in the Imaging results section.
Fig. 8
Fig. 8 Reconstruction of images for LATIS. Fig. (a). The spectral response of three narrow band filters with a 1-nm spectral bandpass. Each marker (blue, green, black) represents the centroid for each narrow band filter imaged. Fig. (b). Using the calculated centroids, wavelength positions are interpolated (represented by red markers). Due to the prism’s nonlinearity, pixel sampling of the spectrum is also nonlinear. Fig. (c). Reconstructed panchromatic image of a resolution target acquired with the tunable LATIS. Fig. (d). Reconstructed panchromatic image of a resolution target for the static LATIS. The FOV is larger due to the greater number of spatial samples (200x200 vs. 88x88).
Fig. 9
Fig. 9 The mean spectral response for all spatial points at 514 nm, 532 nm, 589 nm, and 633 nm. The red lines represent the spectral response at tuning setting 1, and the black lines represent tuning setting 2.
Fig. 10
Fig. 10 Spectral accuracy comparison of 1-nm filters between LATIS and an Ocean Optics USB4000 spectrometer.
Fig. 11
Fig. 11 Fluorescent beads measured with LATIS. Fig. (a). Eight-selected spectral channels from the 46 spectral channels of tuning setting 2 in which the fluorescent beads (613 nm and 605 nm) are imaged. Fig. (b). The recorded spectra using tuning setting 1 of both beads superimposed. Fig. (c). The recorded spectra using tuning setting 2 of both beads. The smaller emission width is due to the improved spectral resolution. Peaks no longer overlap when compared to the previous setting, giving an 8 nm separation
Fig. 12
Fig. 12 BPAE cell imaging with the static LATIS. Using a bandpass filter of 515 to 635 nm, the datacubes acquired were 200x200x27. Eighteen spectral channels are displayed. The averaged spectrum in the red region is shown. Red markers are pixel values and the black lines are interpolated values.
Fig. 13
Fig. 13 Quantum dot imaging of sectioned lymph node mouse tissue using the static LATIS. Using the 570 to 670 nm bandpass filter, the datacubes acquired were 200x200x17. Fifteen spectral channels of the 17 channels are displayed. The averaged spectrum for the region boxed in yellow is plotted. Red markers indicate pixel values and the black lines are interpolated values.

Tables (1)

Tables Icon

Table 1 Full width half maximum (FWHM) measurements

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dx dλ = f focus * dδ dλ
w=pupi l image * f focus f coll

Metrics