Abstract

Two-photon microscopy of cellular autofluorescence intensity and lifetime (optical metabolic imaging, or OMI) is a promising tool for preclinical drug development. OMI, which exploits the endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD, is sensitive to changes in cell metabolism produced by drug treatment. Previous studies have shown that drug response, genetic expression, cell-cell communication, and cell signaling in 3D culture match those of the original in vivo tumor, but not those of 2D culture. The goal of this study is to use OMI to quantify dynamic cell-level metabolic differences in drug response in 2D cell lines vs. 3D organoids generated from xenograft tumors of the same cell origin. BT474 cells and Herceptin-resistant BT474 (HR6) cells were tested. Cells were treated with vehicle control, Herceptin, XL147 (PI3K inhibitor), and the combination. The OMI index was used to quantify response, and is a linear combination of the redox ratio (intensity of NAD(P)H divided by FAD), mean NADH lifetime, and mean FAD lifetime. The results confirm that the OMI index resolves significant differences (p<0.05) in drug response for 2D vs. 3D cultures, specifically for BT474 cells 24 hours after Herceptin treatment, for HR6 cells 24 and 72 hours after combination treatment, and for HR6 cells 72 hours after XL147 treatment. Cell-level analysis of the OMI index also reveals differences in the number of cell sub-populations in 2D vs. 3D culture at 24, 48, and 72 hours post-treatment in control and treated groups. Finally, significant increases (p<0.05) in the mean lifetime of NADH and FAD were measured in 2D vs. 3D for both cell lines at 72 hours post-treatment in control and all treatment groups. These whole-population differences in the mean NADH and FAD lifetimes are supported by differences in the number of cell sub-populations in 2D vs. 3D. Overall, these studies confirm that OMI is sensitive to differences in drug response in 2D vs. 3D, and provides further information on dynamic changes in the relative abundance of metabolic cell sub-populations that contribute to this difference.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical metabolic imaging quantifies heterogeneous cell populations

Alex J. Walsh and Melissa C. Skala
Biomed. Opt. Express 6(2) 559-573 (2015)

Optical imaging of metabolism in HER2 overexpressing breast cancer cells

Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, and Melissa C. Skala
Biomed. Opt. Express 3(1) 75-85 (2012)

Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism

Kinan Alhallak, Lisa G. Rebello, Timothy J. Muldoon, Kyle P. Quinn, and Narasimhan Rajaram
Biomed. Opt. Express 7(11) 4364-4374 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
    [PubMed]
  2. M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11(3), 971–981 (2005).
    [PubMed]
  3. K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discov. Today 7(11), 612–620 (2002).
    [Crossref] [PubMed]
  4. P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
    [Crossref] [PubMed]
  5. M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
    [Crossref] [PubMed]
  6. S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
    [Crossref] [PubMed]
  7. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
    [Crossref] [PubMed]
  8. P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
    [Crossref] [PubMed]
  9. F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
    [Crossref] [PubMed]
  10. M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
    [Crossref] [PubMed]
  11. L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
    [Crossref] [PubMed]
  12. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
    [PubMed]
  13. A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
    [Crossref] [PubMed]
  14. A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
    [Crossref] [PubMed]
  15. A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
    [Crossref] [PubMed]
  16. A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
    [Crossref] [PubMed]
  17. K. Alhallak, L. G. Rebello, T. J. Muldoon, K. P. Quinn, and N. Rajaram, “Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism,” Biomed. Opt. Express 7(11), 4364–4374 (2016).
    [Crossref] [PubMed]
  18. A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
    [Crossref] [PubMed]
  19. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
    [Crossref] [PubMed]
  20. J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2 +, KS and glucose,” Sens. Actuators 11(1-3), 133–143 (1993).
    [Crossref]
  21. T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
    [Crossref] [PubMed]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  23. A. J. Walsh and M. C. Skala, “Optical metabolic imaging quantifies heterogeneous cell populations,” Biomed. Opt. Express 6(2), 559–573 (2015).
    [Crossref] [PubMed]
  24. A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
    [Crossref] [PubMed]
  25. C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
    [Crossref] [PubMed]
  26. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [Crossref] [PubMed]
  27. CellProfiler, Broad Institute (2016). Available at: www.cellprofiler.org . (Accessed: 2nd September 2016)
  28. A. J. Walsh and M. C. Skala, “An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images,” in Proc. SPIE 8948 (eds. Periasamy, A., So, P. T. C. & König, K.) 8948, (2014).
  29. T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
    [Crossref] [PubMed]
  30. A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
    [Crossref] [PubMed]

2017 (1)

A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
[Crossref] [PubMed]

2016 (3)

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

K. Alhallak, L. G. Rebello, T. J. Muldoon, K. P. Quinn, and N. Rajaram, “Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism,” Biomed. Opt. Express 7(11), 4364–4374 (2016).
[Crossref] [PubMed]

2015 (2)

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

A. J. Walsh and M. C. Skala, “Optical metabolic imaging quantifies heterogeneous cell populations,” Biomed. Opt. Express 6(2), 559–573 (2015).
[Crossref] [PubMed]

2014 (3)

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

2013 (4)

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

2010 (2)

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

2009 (1)

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

2007 (3)

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

2005 (1)

M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11(3), 971–981 (2005).
[PubMed]

2003 (1)

M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
[Crossref] [PubMed]

2002 (3)

K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discov. Today 7(11), 612–620 (2002).
[Crossref] [PubMed]

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

1999 (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

1993 (1)

J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2 +, KS and glucose,” Sens. Actuators 11(1-3), 133–143 (1993).
[Crossref]

1979 (1)

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Akita, R. W.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Alhallak, K.

Arteaga, C. L.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Aurisicchio, L.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

Bain, A. J.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Barcellos-Hoff, M. H.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Bhadriraju, K.

K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discov. Today 7(11), 612–620 (2002).
[Crossref] [PubMed]

Bhola, N. E.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Bibby, M. C.

M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11(3), 971–981 (2005).
[PubMed]

Bissell, M. J.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
[Crossref] [PubMed]

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

Blacker, T. S.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Burchmore, M.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Castellanos, J. A.

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

Cavnar, S. P.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Chakrabarty, A.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Chance, B.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Chang, J. C.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Chen, C. S.

K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discov. Today 7(11), 612–620 (2002).
[Crossref] [PubMed]

Ciliberto, G.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

Cobleigh, M. A.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Cook, R. S.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Dave, B.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Demory Beckler, M.

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

Diggins, K. E.

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

Dittfeld, C.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Duchen, M. R.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Dunwiddie, C. T.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Eimer, J.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Fehrenbacher, L.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Fields, C.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Friedman, L. S.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Gale, J. E.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Galluzzi, L.

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Ghosh, R.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Gibbons, A. E.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Gray, J. W.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Gutheil, J. C.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Harris, L. N.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Heaster, T. M.

A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
[Crossref] [PubMed]

Heuchel, R. L.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Hicks, D. J.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Hirschhaeuser, F.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Irish, J. M.

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

Itshak, F.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Jia, X.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Jones, W. P.

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

Junttila, T. T.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Kenny, P. A.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Kepp, O.

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

Kroemer, G.

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

Kuba, M. G.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Kunz-Schughart, L. A.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Lafontant, A.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2 +, KS and glucose,” Sens. Actuators 11(1-3), 133–143 (1993).
[Crossref]

Lee, E. H.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Lee, G. Y.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Lewis Phillips, G. D.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Lindborg, S. R.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Löhr, M.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Longati, P.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Lorenz, K.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Luker, G. D.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Luker, K. E.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Mann, Z. F.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Manning, H. C.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Menne, H.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Merchant, N. B.

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

Mian, I. S.

M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
[Crossref] [PubMed]

Mueller-Klieser, W.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

Muldoon, T. J.

Munos, B. H.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Murphy, M.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Myers, C. A.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Mytelka, D. S.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Nagathihalli, N. S.

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

Nakase, Y.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Neely, T.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Neve, R. M.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Novotny, W. F.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Oshino, R.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Pampaloni, F.

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Parsons, K.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Paul, S. M.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Persinger, C. C.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Petersen, O. W.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

Pohlmann, P. R.

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

Press, M.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Quinn, K. P.

Radisky, D. C.

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

Rajaram, N.

Ramanujam, N.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Rebello, L. G.

Rehnmark, S.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Reynaud, E. G.

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Riching, K. M.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Rickelmann, A. D.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Rizki, A.

M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
[Crossref] [PubMed]

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

Sampath, D.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Sanders, M. E.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

Schacht, A. L.

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

Schoener, B.

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

Semeiks, J. R.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Shah, A. T.

A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
[Crossref] [PubMed]

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

Shak, S.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Skala, M. C.

A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
[Crossref] [PubMed]

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

A. J. Walsh and M. C. Skala, “Optical metabolic imaging quantifies heterogeneous cell populations,” Biomed. Opt. Express 6(2), 559–573 (2015).
[Crossref] [PubMed]

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Slamon, D. J.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Sliwkowski, M. X.

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Spellman, P. T.

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Stelzer, E. H. K.

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Stewart, S. J.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Suggitt, M.

M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11(3), 971–981 (2005).
[PubMed]

Sutton, C.

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

Szabadkai, G.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Szmacinski, H.

J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2 +, KS and glucose,” Sens. Actuators 11(1-3), 133–143 (1993).
[Crossref]

Takayama, S.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Toftgård, R.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Tripathy, D.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Vander Heiden, M. G.

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

Verbeke, C.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Vogel, C. L.

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Wagman, A.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Walsh, A. J.

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

A. J. Walsh and M. C. Skala, “Optical metabolic imaging quantifies heterogeneous cell populations,” Biomed. Opt. Express 6(2), 559–573 (2015).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Weaver, V. M.

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

West, J.

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

White, J. G.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Witt, M. R.

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Xiao, A.

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Ziegler, M.

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

BMC Cancer (1)

P. Longati, X. Jia, J. Eimer, A. Wagman, M. R. Witt, S. Rehnmark, C. Verbeke, R. Toftgård, M. Löhr, and R. L. Heuchel, “3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing,” BMC Cancer 13(1), 95 (2013).
[Crossref] [PubMed]

Cancer Cell (1)

T. T. Junttila, R. W. Akita, K. Parsons, C. Fields, G. D. Lewis Phillips, L. S. Friedman, D. Sampath, and M. X. Sliwkowski, “Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941,” Cancer Cell 15(5), 429–440 (2009).
[Crossref] [PubMed]

Cancer Res. (3)

A. Chakrabarty, N. E. Bhola, C. Sutton, R. Ghosh, M. G. Kuba, B. Dave, J. C. Chang, and C. L. Arteaga, “Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors,” Cancer Res. 73(3), 1190–1200 (2013).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(18), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

M. Suggitt and M. C. Bibby, “50 years of preclinical anticancer drug screening: empirical to target-driven approaches,” Clin. Cancer Res. 11(3), 971–981 (2005).
[PubMed]

Curr. Opin. Cell Biol. (1)

M. J. Bissell, A. Rizki, and I. S. Mian, “Tissue architecture: the ultimate regulator of breast epithelial function,” Curr. Opin. Cell Biol. 15(6), 753–762 (2003).
[Crossref] [PubMed]

Differentiation (1)

M. J. Bissell, D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen, “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70(9-10), 537–546 (2002).
[Crossref] [PubMed]

Drug Discov. Today (1)

K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discov. Today 7(11), 612–620 (2002).
[Crossref] [PubMed]

J. Biol. Chem. (1)

B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” J. Biol. Chem. 254(11), 4764–4771 (1979).
[PubMed]

J. Biotechnol. (1)

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, “Multicellular tumor spheroids: an underestimated tool is catching up again,” J. Biotechnol. 148(1), 3–15 (2010).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

C. L. Vogel, M. A. Cobleigh, D. Tripathy, J. C. Gutheil, L. N. Harris, L. Fehrenbacher, D. J. Slamon, M. Murphy, W. F. Novotny, M. Burchmore, S. Shak, S. J. Stewart, and M. Press, “Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer,” J. Clin. Oncol. 20(3), 719–726 (2002).
[Crossref] [PubMed]

Mol. Oncol. (1)

P. A. Kenny, G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, P. T. Spellman, K. Lorenz, E. H. Lee, M. H. Barcellos-Hoff, O. W. Petersen, J. W. Gray, and M. J. Bissell, “The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression,” Mol. Oncol. 1(1), 84–96 (2007).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Nat. Commun. (1)

T. S. Blacker, Z. F. Mann, J. E. Gale, M. Ziegler, A. J. Bain, G. Szabadkai, and M. R. Duchen, “Separating NADH and NADPH fluorescence in live cells and tissues using FLIM,” Nat. Commun. 5, 3936 (2014).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (2)

S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, “How to improve R&D productivity: the pharmaceutical industry’s grand challenge,” Nat. Rev. Drug Discov. 9(3), 203–214 (2010).
[PubMed]

L. Galluzzi, O. Kepp, M. G. Vander Heiden, and G. Kroemer, “Metabolic targets for cancer therapy,” Nat. Rev. Drug Discov. 12(11), 829–846 (2013).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Neoplasia (1)

A. T. Shah, K. E. Diggins, A. J. Walsh, J. M. Irish, and M. C. Skala, “In vivo autofluorescence imaging of tumor heterogeneity in response to treatment,” Neoplasia 17(12), 862–870 (2015).
[Crossref] [PubMed]

Pancreas (1)

A. J. Walsh, J. A. Castellanos, N. S. Nagathihalli, N. B. Merchant, and M. C. Skala, “Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response,” Pancreas 45(6), 863–869 (2016).
[Crossref] [PubMed]

PLoS One (2)

A. T. Shah, T. M. Heaster, and M. C. Skala, “Metabolic imaging of head and neck cancer organoids,” PLoS One 12(1), e0170415 (2017).
[Crossref] [PubMed]

A. T. Shah, M. Demory Beckler, A. J. Walsh, W. P. Jones, P. R. Pohlmann, and M. C. Skala, “Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma,” PLoS One 9(3), e90746 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Sens. Actuators (1)

J. R. Lakowicz and H. Szmacinski, “Fluorescence lifetime-based sensing of pH, Ca2 +, KS and glucose,” Sens. Actuators 11(1-3), 133–143 (1993).
[Crossref]

Tomography (1)

S. P. Cavnar, A. Xiao, A. E. Gibbons, A. D. Rickelmann, T. Neely, K. E. Luker, S. Takayama, and G. D. Luker, “Imaging sensitivity of quiescent cancer cells to metabolic perturbations in bone marrow spheroids,” Tomography 2(2), 146–157 (2016).
[Crossref] [PubMed]

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

CellProfiler, Broad Institute (2016). Available at: www.cellprofiler.org . (Accessed: 2nd September 2016)

A. J. Walsh and M. C. Skala, “An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images,” in Proc. SPIE 8948 (eds. Periasamy, A., So, P. T. C. & König, K.) 8948, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical metabolic imaging of BT474 2D monolayers. The OMI index was calculated at 24 (a), 48 (b), and 72 (c) hours post-drug treatment. Gold- and gray-colored bars represent changes versus control that are in agreement and disagreement, respectively, with prior 3D organoid studies [15]. Blue bars delineate the control group for comparison. Population density curves were also generated at 24 (d), 48 (e), and 72 (f) hour time points to resolve OMI index distributions across a population.
Fig. 2
Fig. 2 Comparison of fluorescence lifetime values in BT474 3D organoids and 2D monolayers. Average values for NAD(P)H (a) and FAD (b) mean fluorescence lifetime (τm) in 2D monolayer and 3D organoid cultures at 72 hours post-treatment reveal significantly greater τm values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population density curves for NAD(P)H (c-f) and FAD (g-j) τm further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 3
Fig. 3 Optical metabolic imaging of HR6 monolayers. The OMI index was calculated at 24 (a), 48 (b), and 72 (c) hours post-drug treatment. Gold- and gray-colored bars represent changes versus control that are in agreement and disagreement, respectively, with prior 3D organoid studies [15]. Blue bars delineate the control group for comparison. Population density curves were also generated at 24 (d), 48 (e), and 72 (f) hour time points to resolve OMI index distributions across a population.
Fig. 4
Fig. 4 Comparison of fluorescence lifetime values in HR6 3D organoids and 2D monolayers. Average values for NAD(P)H (a) and FAD (b) τm in 2D monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.001). Population density curves for NAD(P)H (c-f) and FAD (g-j) τm further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 5
Fig. 5 Redox ratios of BT474 2D monolayers. The normalized redox ratio was calculated at 24 (a), 48 (b), and 72 (c) hours post-drug treatment. The redox ratio significantly decreased (p<0.05) with treatment in all groups excluding the Herceptin group at the 24-hour time point. These trends are in good agreement with corresponding OMI index results (Fig. 1(a-c)).
Fig. 6
Fig. 6 Comparison of short (τ1) and long (τ2) NAD(P)H fluorescence lifetime values in BT474 3D organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population density curves for NAD(P)H τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 7
Fig. 7 Comparison of short (τ1) and long (τ2) FAD fluorescence lifetime values in BT474 3D organoids and 2D monolayers. Average values for FAD τ1 (a) and τ2 (b) in 2D monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population density curves for FAD τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 8
Fig. 8 Comparison of the NAD(P)H and FAD fractional short lifetime components (α1) in BT474 2D monolayers and 3D organoids. The NAD(P)H short lifetime component (a) changed less with treatment in 2D monolayers than in 3D organoids. The changes in the FAD short lifetime component (b) were also lesser in magnitude and showed similarly inconsistent trends with respect to corresponding 3D organoid α1 values. The organoid data is a subset of data previously published in [15].
Fig. 9
Fig. 9 Redox ratios of HR6 2D monolayers. The normalized redox ratio was calculated with respect to control at 24 (a), 48 (b), and 72 (c) hours post-drug treatment. Trends in redox ratio in this cell line agree with trends observed in OMI index at the 24-hour (Fig. 3(a)) and 48-hour (Fig. 3(b)) time points. However, the redox ratio increased significantly (p<0.05) in each of the treatment groups after 72 hours, whereas no significant changes were measured in OMI index at this time point (Fig. 3(c)).
Fig. 10
Fig. 10 Comparison of short (τ1) and long (τ2) NAD(P)H fluorescence lifetime values in HR6 3D organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population density curves for NAD(P)H τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 11
Fig. 11 Comparison of short (τ1) and long (τ2) FAD fluorescence lifetime values in HR6 3D organoids and 2D monolayers. Average values for NAD(P)H τ1 (a) and τ2 (b) in 2D monolayers and 3D organoids at 72 hours post-treatment reveal significantly greater values in 2D monolayers with respect to corresponding 3D organoid groups (p<0.05). Population density curves for FAD τ1 (c-f) and τ2 (g-j) further distinguish 2D monolayer and 3D organoid models. The organoid data is a subset of data previously published in [15].
Fig. 12
Fig. 12 Comparison of the NAD(P)H and FAD fractional short lifetime components (α1) in HR6 2D monolayers and 3D organoids. The NAD(P)H short lifetime component (a) was significantly lesser in 2D monolayers than in 3D organoids. FAD α1 values (b) in 2D monolayers were significantly greater than those in corresponding 3D organoids. The organoid data is a subset of data previously published in [15].

Tables (2)

Tables Icon

Table 1 Comparison of number of sub-populations in 2D monolayer and 3D organoid BT474 cultures. Differences between 2D monolayers and 3D organoids are highlighted in bold.

Tables Icon

Table 2 Comparison of number of sub-populations in 2D monolayer and 3D organoid HR6 cultures. Differences between 2D monolayers and 3D organoids are highlighted in bold.

Metrics