Abstract

A psychophysical approach has been designed to measure straylight from intraocular lenses (IOLs) in vitro. This approach uses a clinical straylight meter (C-Quant) and an observer’s eye as optical detector. Based on this, we introduced a method for study of straylight-wavelength dependency for IOLs. This dependency can be used to distinguish between 2 types of scattering particles (small and large) as defined by Mie theory. Validation was performed using a turbidity standard and scattering filters. Several IOLs were analyzed to identify potential scattering sources. Large particles were found to predominate in scattering from the studied lenses. This was confirmed by straylight-angular dependency found in these IOLs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method for in vitro assessment of straylight from intraocular lenses

Grzegorz Łabuz, Fernando Vargas-Martín, Thomas J.T.P. van den Berg, and Norberto López-Gil
Biomed. Opt. Express 6(11) 4457-4464 (2015)

Combining in vitro test methods for measuring light scatter in intraocular lenses

Marrie van der Mooren, Tom van den Berg, Joris Coppens, and Patricia Piers
Biomed. Opt. Express 2(3) 505-510 (2011)

Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering

Pablo Alejandro Barrionuevo, Elisa Margarita Colombo, Meritxell Vilaseca, Jaume Pujol, and Luis Alberto Issolio
J. Opt. Soc. Am. A 29(7) 1293-1299 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
    [Crossref] [PubMed]
  2. J. J. Vos, “Disability glare - a state of the art report,” Commission International de l’Eclairage Journal 3, 39–53 (1984).
  3. G. Labuz, N. J. Reus, and T. J. van den Berg, “Straylight from glistenings in intraocular lenses: an in-vitro study,” J. Cataract Refract. Surg.in press.
  4. M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
    [Crossref] [PubMed]
  5. M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
    [Crossref] [PubMed]
  6. L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
    [Crossref] [PubMed]
  7. K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
    [Crossref] [PubMed]
  8. L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
    [Crossref] [PubMed]
  9. T. Van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” Encyclopedia of the Eye 3, 173–183 (2010).
  10. L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
    [Crossref] [PubMed]
  11. G. Łabuz, F. Vargas-Martín, T. J. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
    [Crossref] [PubMed]
  12. T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72(2), 52–59 (1995).
    [Crossref] [PubMed]
  13. T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
    [Crossref] [PubMed]
  14. J. J. Vos and T. J. Van Den Berg, “Report on disability glare,” CIE collection 135, 1–9 (1999).
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).
  16. T. J. van den Berg and K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34(11), 1453–1456 (1994).
    [Crossref] [PubMed]
  17. J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
    [Crossref] [PubMed]
  18. G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
    [Crossref] [PubMed]
  19. H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
    [Crossref] [PubMed]
  20. M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
    [Crossref] [PubMed]

2016 (2)

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

2015 (2)

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

G. Łabuz, F. Vargas-Martín, T. J. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
[Crossref] [PubMed]

2014 (1)

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

2013 (2)

M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

2011 (1)

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

2010 (1)

J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
[Crossref] [PubMed]

2008 (1)

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

2006 (2)

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

1999 (1)

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

1995 (1)

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72(2), 52–59 (1995).
[Crossref] [PubMed]

1994 (1)

T. J. van den Berg and K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34(11), 1453–1456 (1994).
[Crossref] [PubMed]

1984 (1)

J. J. Vos, “Disability glare - a state of the art report,” Commission International de l’Eclairage Journal 3, 39–53 (1984).

Beiko, G. H.

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

Bourne, W. M.

J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
[Crossref] [PubMed]

Brubaker, J.

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

Coppens, J. E.

L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

Das, K. K.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Davis, D.

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

de Wit, G. C.

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

Espandar, L.

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

Franssen, L.

M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

Karakelle, M.

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Katsuki, Y.

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

Labuz, G.

G. Łabuz, F. Vargas-Martín, T. J. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
[Crossref] [PubMed]

G. Labuz, N. J. Reus, and T. J. van den Berg, “Straylight from glistenings in intraocular lenses: an in-vitro study,” J. Cataract Refract. Surg.in press.

Langeslag, M. J.

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

López-Gil, N.

Mamalis, N.

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

Matsushima, H.

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

McLaren, J. W.

J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
[Crossref] [PubMed]

Mukai, K.

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

Nagata, M.

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

Patel, S. V.

J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
[Crossref] [PubMed]

Piers, P.

Piers, P. A.

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

Reus, N. J.

G. Labuz, N. J. Reus, and T. J. van den Berg, “Straylight from glistenings in intraocular lenses: an in-vitro study,” J. Cataract Refract. Surg.in press.

Schwiegerling, J.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Senoo, T.

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

Spekreijse, H.

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

Steinert, R.

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

Stover, J. C.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

Tan, K. E.

T. J. van den Berg and K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34(11), 1453–1456 (1994).
[Crossref] [PubMed]

Tyson, F.

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

van den Berg, T. J.

G. Łabuz, F. Vargas-Martín, T. J. van den Berg, and N. López-Gil, “Method for in vitro assessment of straylight from intraocular lenses,” Biomed. Opt. Express 6(11), 4457–4464 (2015).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72(2), 52–59 (1995).
[Crossref] [PubMed]

T. J. van den Berg and K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34(11), 1453–1456 (1994).
[Crossref] [PubMed]

G. Labuz, N. J. Reus, and T. J. van den Berg, “Straylight from glistenings in intraocular lenses: an in-vitro study,” J. Cataract Refract. Surg.in press.

van der Mooren, M.

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

M. van der Mooren, L. Franssen, and P. Piers, “Effects of glistenings in intraocular lenses,” Biomed. Opt. Express 4(8), 1294–1304 (2013).
[Crossref] [PubMed]

Vargas-Martín, F.

Vos, J. J.

J. J. Vos, “Disability glare - a state of the art report,” Commission International de l’Eclairage Journal 3, 39–53 (1984).

Werner, L.

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Commission International de l’Eclairage Journal (1)

J. J. Vos, “Disability glare - a state of the art report,” Commission International de l’Eclairage Journal 3, 39–53 (1984).

Invest. Ophthalmol. Vis. Sci. (3)

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Effects of Intraocular Lens Opacification on Light Scatter, Stray Light, and Overall Optical Quality/Performance,” Invest. Ophthalmol. Vis. Sci. 57(7), 3239–3247 (2016).
[Crossref] [PubMed]

L. Franssen, J. E. Coppens, and T. J. van den Berg, “Compensation comparison method for assessment of retinal straylight,” Invest. Ophthalmol. Vis. Sci. 47(2), 768–776 (2006).
[Crossref] [PubMed]

J. W. McLaren, W. M. Bourne, and S. V. Patel, “Standardization of corneal haze measurement in confocal microscopy,” Invest. Ophthalmol. Vis. Sci. 51(11), 5610–5616 (2010).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (7)

G. C. de Wit, L. Franssen, J. E. Coppens, and T. J. van den Berg, “Simulating the straylight effects of cataracts,” J. Cataract Refract. Surg. 32(2), 294–300 (2006).
[Crossref] [PubMed]

H. Matsushima, Y. Katsuki, K. Mukai, M. Nagata, and T. Senoo, “Observation of whitening by cryo-focused ion beam scanning electron microscopy,” J. Cataract Refract. Surg. 37(4), 788–789 (2011).
[Crossref] [PubMed]

M. J. Langeslag, M. van der Mooren, G. H. Beiko, and P. A. Piers, “Impact of intraocular lens material and design on light scatter: In vitro study,” J. Cataract Refract. Surg. 40(12), 2120–2127 (2014).
[Crossref] [PubMed]

K. K. Das, J. C. Stover, J. Schwiegerling, and M. Karakelle, “Technique for measuring forward light scatter in intraocular lenses,” J. Cataract Refract. Surg. 39(5), 770–778 (2013).
[Crossref] [PubMed]

L. Werner, J. C. Stover, J. Schwiegerling, and K. K. Das, “Light scattering, straylight, and optical quality in hydrophobic acrylic intraocular lenses with subsurface nanoglistenings,” J. Cataract Refract. Surg. 42(1), 148–156 (2016).
[Crossref] [PubMed]

N. Mamalis, J. Brubaker, D. Davis, L. Espandar, and L. Werner, “Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update,” J. Cataract Refract. Surg. 34(9), 1584–1591 (2008).
[Crossref] [PubMed]

M. van der Mooren, R. Steinert, F. Tyson, M. J. Langeslag, and P. A. Piers, “Explanted multifocal intraocular lenses,” J. Cataract Refract. Surg. 41(4), 873–877 (2015).
[Crossref] [PubMed]

Optom. Vis. Sci. (1)

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72(2), 52–59 (1995).
[Crossref] [PubMed]

Vision Res. (2)

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39(8), 1437–1445 (1999).
[Crossref] [PubMed]

T. J. van den Berg and K. E. Tan, “Light transmittance of the human cornea from 320 to 700 nm for different ages,” Vision Res. 34(11), 1453–1456 (1994).
[Crossref] [PubMed]

Other (4)

J. J. Vos and T. J. Van Den Berg, “Report on disability glare,” CIE collection 135, 1–9 (1999).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).

G. Labuz, N. J. Reus, and T. J. van den Berg, “Straylight from glistenings in intraocular lenses: an in-vitro study,” J. Cataract Refract. Surg.in press.

T. Van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” Encyclopedia of the Eye 3, 173–183 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the C-Quant adaptation (not to scale). LCQ=lens of the C-Quant, IOL=intraocular lens, L=lens.
Fig. 2
Fig. 2 Complete set-up for assessment of straylight-wavelength dependence of intraocular lenses.
Fig. 3
Fig. 3 Comparison between straylight measured with the observer’s eye looking at the camera projection (“Camera test”) and with the observer’s eye looking directly through the C-Quant adaptation (“Eye test”).
Fig. 4
Fig. 4 Validation of the set-up for detection of submicron particles. Straylight of AMCO Clear and Black Pro Mist (BPM) filters was measured with interference filters of 468, 550 and 650 nm. The “+” and “++” signs refer to different dilutions of AMCO Clear. Error bars = standard deviation.
Fig. 5
Fig. 5 Straylight of the studied IOLs at 2.5° and 7.0° scatter angle. The dashed green and red line indicate straylight levels of the normal crystalline lens at age 20 and 70, respectively. For comparison, results of AMCO Clear are also presented (dashed black line). Error bars = standard deviation.
Fig. 6
Fig. 6 Analysis of straylight-wavelength dependency of IOLs. Straylight was measured at 7.0° scatter angle. The dashed black line corresponds to Rayleigh-type scatter (λ−4). Error bars = standard deviation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S IOL =10^log( S setup+IOL )10^log( S setup )[de g 2 /sr]
s = θ 2 x PSF( θ ) [ deg 2 /sr ]

Metrics