Abstract

Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery

Alexander Wong, Akshaya Mishra, Kostadinka Bizheva, and David A. Clausi
Opt. Express 18(8) 8338-8352 (2010)

Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter

Desmond C. Adler, Tony H. Ko, and James G. Fujimoto
Opt. Lett. 29(24) 2878-2880 (2004)

Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage

Jianbing Xu, Haiyan Ou, Edmund Y. Lam, P. C. Chui, and Kenneth K. Y. Wong
Opt. Lett. 38(15) 2900-2903 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  3. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  4. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7), 1427–1439 (1997).
    [Crossref] [PubMed]
  5. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
    [Crossref] [PubMed]
  6. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [Crossref] [PubMed]
  7. T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express 4(4), 619–634 (2013).
    [Crossref] [PubMed]
  8. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
    [Crossref] [PubMed]
  9. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
    [Crossref] [PubMed]
  10. B. Karamata, P. Lambelet, M. Laubscher, P. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref] [PubMed]
  11. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  12. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29(24), 2878–2880 (2004).
    [Crossref] [PubMed]
  13. S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
    [Crossref] [PubMed]
  14. Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Lett. 34(10), 1516–1518 (2009).
    [Crossref] [PubMed]
  15. J. Xu, H. Ou, E. Y. Lam, P. C. Chui, and K. K. Y. Wong, “Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage,” Opt. Lett. 38(15), 2900–2903 (2013).
    [Crossref] [PubMed]
  16. R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24048–24059 (2010).
    [Crossref] [PubMed]
  17. A. Cameron, D. Lui, A. Boroomand, J. Glaister, A. Wong, and K. Bizheva, “Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling,” Biomed. Opt. Express 4(9), 1769–1785 (2013).
    [Crossref] [PubMed]
  18. D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett. 37(20), 4209–4211 (2012).
    [Crossref] [PubMed]
  19. M. R. N. Avanaki, P. P. Laissue, T. J. Eom, A. G. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52(21), 5050–5057 (2013).
    [Crossref] [PubMed]
  20. A. Zhang, J. F. Xi, W. X. Liang, T. Gao, and X. D. Li, “Generic pixel-wise speckle detection in Fourier-domain OCT images,” Opt. Lett. 39(15), 4392–4395 (2014).
    [Crossref] [PubMed]
  21. I. Selesnick, “The double-density dual-tree DWT,” IEEE Trans. Signal Process. 52(5), 1304–1314 (2004).
    [Crossref]
  22. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [Crossref] [PubMed]
  23. M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14(12), 2091–2106 (2005).
    [Crossref] [PubMed]
  24. E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
    [Crossref]
  25. J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (1)

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

2005 (2)

M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14(12), 2091–2106 (2005).
[Crossref] [PubMed]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (2)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1997 (1)

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7), 1427–1439 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Adler, D. C.

André, R.

Araújo, A.

Avanaki, M. R. N.

Barbeiro, S.

Bashkansky, M.

Bernardes, R.

Bilenca, A.

Bizheva, K.

Boretsky, A. R.

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

Boroomand, A.

Bouma, B. E.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Cable, A.

Cameron, A.

Candès, E. J.

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Z.

Chitchian, S.

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

Chui, P. C.

Cunha-Vaz, J.

Demanet, L.

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

Desjardins, A. E.

Do, M. N.

M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14(12), 2091–2106 (2005).
[Crossref] [PubMed]

Donoho, D. L.

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

Eom, T. J.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gao, T.

Glaister, J.

Gorczynska, I.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Hojjatoleslami, A.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Huber, R.

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Jian, Z.

Jiang, J.

Kang, J. U.

Karamata, B.

Khurana, M.

Kim, E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Kim, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Klein, T.

Ko, T. H.

Kowalczyk, A.

Laissue, P. P.

Lam, E. Y.

Lambelet, P.

Lasser, T.

Laubscher, M.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Leung, M. K. K.

Li, X.

Li, X. D.

Liang, W.

Liang, W. X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, L. Y.

Liu, Z.

Lui, D.

Maduro, C.

Mariampillai, A.

Mayer, M. A.

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

Miller, D. T.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Milner, T. E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Moriyama, E. H.

Motamedi, M.

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

Munce, N. R.

Oh, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Oh, S.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

Ou, H.

Ozcan, A.

Pfeiffer, T.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rao, B.

Reintjes, J.

Salathé, P. P.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7), 1427–1439 (1997).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Selesnick, I.

I. Selesnick, “The double-density dual-tree DWT,” IEEE Trans. Signal Process. 52(5), 1304–1314 (2004).
[Crossref]

Serranho, P.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tearney, G. J.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Tromberg, B. J.

van Kuijk, F. J.

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

Vaswani, N.

Vetterli, M.

M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14(12), 2091–2106 (2005).
[Crossref] [PubMed]

Vitkin, I. A.

Wieser, W.

Wilson, B. C.

Wojtkowski, M.

Wong, A.

Wong, K. K. Y.

Xi, J.

Xi, J. F.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Xu, D.

Xu, J.

Yang, V. X. D.

Ying, L.

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

Yu, L.

Yu, S.

Yu, Z.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zhang, A.

Appl. Opt. (1)

Biomed. Opt. Express (2)

IEEE Trans. Image Process. (1)

M. N. Do and M. Vetterli, “The contourlet transform: An efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14(12), 2091–2106 (2005).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (1)

I. Selesnick, “The double-density dual-tree DWT,” IEEE Trans. Signal Process. 52(5), 1304–1314 (2004).
[Crossref]

J. Biomed. Opt. (5)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt. 10(6), 064034 (2005).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

S. Chitchian, M. A. Mayer, A. R. Boretsky, F. J. van Kuijk, and M. Motamedi, “Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform,” J. Biomed. Opt. 17(11), 116009 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Multiscale Model. Simul. (1)

E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” Multiscale Model. Simul. 5(3), 861–899 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (9)

D. Xu, N. Vaswani, Y. Huang, and J. U. Kang, “Modified compressive sensing optical coherence tomography with noise reduction,” Opt. Lett. 37(20), 4209–4211 (2012).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

Z. Jian, Z. Yu, L. Yu, B. Rao, Z. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Lett. 34(10), 1516–1518 (2009).
[Crossref] [PubMed]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
[Crossref] [PubMed]

B. Karamata, P. Lambelet, M. Laubscher, P. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref] [PubMed]

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29(24), 2878–2880 (2004).
[Crossref] [PubMed]

J. Xi, A. Zhang, Z. Liu, W. Liang, L. Y. Lin, S. Yu, and X. Li, “Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging,” Opt. Lett. 39(7), 2016–2019 (2014).
[Crossref] [PubMed]

A. Zhang, J. F. Xi, W. X. Liang, T. Gao, and X. D. Li, “Generic pixel-wise speckle detection in Fourier-domain OCT images,” Opt. Lett. 39(15), 4392–4395 (2014).
[Crossref] [PubMed]

J. Xu, H. Ou, E. Y. Lam, P. C. Chui, and K. K. Y. Wong, “Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage,” Opt. Lett. 38(15), 2900–2903 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42(7), 1427–1439 (1997).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The detected speckles from a fingertip OCT image. (a) Original OCT image. (b) Detected speckles overlaid onto the OCT intensity image within the area marked by the yellow box in (a). The speckles are plotted in red.

Fig. 2
Fig. 2

The marked area in Fig. 1(a) before speckle adjustment (a) and after speckle adjustment (b). Scale bar: 20 µm.

Fig. 3
Fig. 3

The resulted image for the area plotted in Fig. 2(b) after being processed with DD-DT-CWT. Scale bar: 20 µm.

Fig. 4
Fig. 4

The results of speckle reduction algorithms applied to a fingertip image. (a) Original OCT image. (b) Image processed by the proposed method using DD-DT-CWT shrinkage after speckle adjustment. (c) Image processed by conventional DD-DT-CWT shrinkage without speckle adjustment. In (a), the green boxes marked the homogeneous areas. The red boxes marked the heterogeneous areas. The yellow box marked the background area. The dashed blue line marked the pixel values evaluated for calculating AREA. Scale bar: 200 µm.

Fig. 5
Fig. 5

The pixel values along the blue dashed line in Fig. 4(a) from the original image, image processed by the proposed method and image processed by DD-DT-CWT shrinkage for K = 0.2 (a) and K = 1.2 (b). (c) The area of interest for evaluating AREA. The maximum pixel value for the proposed method and DD-DT-CWT shrinkage for both K = 0.2 and K = 1.2 is normalized to 1.

Fig. 6
Fig. 6

The change of CNR and AREA versus threshold K.

Fig. 7
Fig. 7

The results of speckle reduction algorithms applied to an endoscopic OCT image of guinea pig esophagus. (a) Original OCT image before polar convention. (b) Image processed by the proposed method before polar convention. (c) Image processed by contourlet shrinkage before polar convention. (d) Original OCT image after polar convention. (e) Image processed by the proposed method after polar convention. (f) Image processed by contourlet shrinkage after polar convention. (g)-(i) The magnified images of (d)-(f) corresponding to the area denoted by the black box in (d). In (a), the two green boxes marked the representative homogeneous areas. The red boxes marked the representative heterogeneous areas. The yellow box marked the background area. The vertical dashed blue line indicates the direction for calculating AREA.

Tables (2)

Tables Icon

Table 1 The comparison of the image quality metrics calculated from the fingertip image

Tables Icon

Table 2 The comparison of the image quality metrics calculated from the guinea pig esophagus image

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SNR=10 log 10 [ max( I lin 2 ) σ lin 2 ],
CNR= 1 R r=1 R { 10 log 10 [ μ r μ b σ r 2 + σ b 2 ] } ,
ENL= 1 H ( h=1 H μ h 2 σ h 2 ),

Metrics