Abstract

Blue phases (BPs) are mesophases existing between the isotropic and chiral nematic phases of liquid crystals (LCs). In recent years, blue phase LCs (BPLCs) have been extensively studied in the field of LC science and display technology. However, the application of BPLCs in biosensing has not been explored. In this study, a BPLC-based biosensing technology was developed for the detection and quantitation of bovine serum albumin (BSA). The sensing platform was constructed by assembling an empty cell with two glass slides coated with homeotropic alignment layers and with immobilized BSA atop. The LC cells were heated to isotropic phase and then allowed to cool down to and maintained at distinct BP temperatures for spectral measurements and texture observations. At BSA concentrations below 10−6 g/ml, we observed that the Bragg reflection wavelength blue-shifted with increasing concentration of BSA, suggesting that the BP is a potentially sensitive medium in the detection and quantitation of biomolecules. By using the BPLC at 37 °C and the same polymorphic material in the smectic A phase at 20 °C, two linear correlations were established for logarithmic BSA concentrations ranging from 10−9 to 10−6 g/ml and from 10−6 to 10−3 g/ml. Our results demonstrate the potential of BPLCs in biosensing and quantitative analysis of biomolecules.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal

Yu-Cheng Hsiao, Yu-Chien Sung, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 6(12) 5033-5038 (2015)

Polymer-stabilized blue phase liquid crystals: a tutorial [Invited]

Jin Yan and Shin-Tson Wu
Opt. Mater. Express 1(8) 1527-1535 (2011)

Temperature dependence of refractive index in blue phase liquid crystals

Chun-Wei Chen, Hung-Chang Jau, Chun-Hong Lee, Cheng-Chang Li, Chien-Tsung Hou, Chih-Wei Wu, Tsung-Hsien Lin, and I. C. Khoo
Opt. Mater. Express 3(5) 527-532 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
    [Crossref] [PubMed]
  2. Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
    [Crossref]
  3. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
    [Crossref] [PubMed]
  4. S. Munir and S. Y. Park, “Liquid crystal-Based DNA biosensor for myricetin detection,” Sens. Actuators B Chem. 233, 559–565 (2016).
    [Crossref]
  5. P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
    [Crossref]
  6. M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
    [Crossref] [PubMed]
  7. N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
    [Crossref]
  8. H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
    [Crossref] [PubMed]
  9. S. H. Sun, M. J. Lee, Y. H. Lee, W. Lee, X. Song, and C. Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
    [Crossref] [PubMed]
  10. H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
    [Crossref] [PubMed]
  11. H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
    [Crossref] [PubMed]
  12. Y. C. Hsiao, Y. C. Sung, M. J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
    [Crossref] [PubMed]
  13. S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
    [Crossref] [PubMed]
  14. C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
    [Crossref]
  15. V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
    [Crossref] [PubMed]
  16. T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
    [Crossref] [PubMed]
  17. C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
    [Crossref]
  18. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding 128, 99–117 (2008).
    [Crossref]
  19. M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
    [Crossref] [PubMed]
  20. D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys. 61(2), 385–433 (1989).
    [Crossref]
  21. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  22. E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
    [Crossref] [PubMed]
  23. S. C. Chen, P. C. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
    [Crossref]
  24. Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
    [Crossref] [PubMed]
  25. V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
    [Crossref] [PubMed]
  26. V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
    [Crossref]
  27. T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
    [PubMed]

2016 (6)

S. Munir and S. Y. Park, “Liquid crystal-Based DNA biosensor for myricetin detection,” Sens. Actuators B Chem. 233, 559–565 (2016).
[Crossref]

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

2015 (4)

M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
[Crossref] [PubMed]

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

Y. C. Hsiao, Y. C. Sung, M. J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref] [PubMed]

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

2014 (4)

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

S. H. Sun, M. J. Lee, Y. H. Lee, W. Lee, X. Song, and C. Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
[Crossref] [PubMed]

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

S. C. Chen, P. C. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
[Crossref]

2013 (1)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

2012 (1)

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

2010 (1)

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

2009 (1)

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

2008 (2)

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding 128, 99–117 (2008).
[Crossref]

2007 (1)

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

2006 (2)

S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
[Crossref] [PubMed]

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

2005 (1)

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

2003 (1)

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

1989 (1)

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys. 61(2), 385–433 (1989).
[Crossref]

Abbasi, R.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Abbott, N. L.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Aliño, V. J.

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

Balamurugan, S.

M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
[Crossref] [PubMed]

Bertics, P. J.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Biradar, A. M.

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

Borzova, V. A.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Carlton, R. J.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Chebotareva, N. A.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Chen, C. Y.

Chen, S. C.

Choy, W. T.

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

Clare, B. H.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

Cordoyiannis, G.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

dePablo, J. J.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Fraser, A.

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

Ganguly, P.

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

Glorieux, C.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Govindaraju, T.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

Hall, D. J.

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Han, G. R.

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

Harano, H.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Helfinstine, S. L.

S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
[Crossref] [PubMed]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Honakerb, L. W.

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Hsiao, Y. C.

Hsu, Y.-C.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Hunter, J. T.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Inui, E.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Israel, B. A.

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Jáklib, A. I.

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Jang, C. H.

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

Ji, L.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Ju, H.

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Karatairi, E.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Khan, A. R.

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

Khan, M.

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

Khan, S. A.

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Kikuchi, H.

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding 128, 99–117 (2008).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kleymenov, S. Y.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Kobayashi, K.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Kooijmanc, E. E.

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Kralj, S.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Kumar, A.

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

Kurganov, B. I.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Kutnjak, Z.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Lavrentovich, O. D.

S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
[Crossref] [PubMed]

Lee, H. G.

H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Lee, M. J.

C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

Y. C. Hsiao, Y. C. Sung, M. J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref] [PubMed]

S. H. Sun, M. J. Lee, Y. H. Lee, W. Lee, X. Song, and C. Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
[Crossref] [PubMed]

Lee, M.-J.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Lee, W.

C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

Y. C. Hsiao, Y. C. Sung, M. J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref] [PubMed]

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

S. H. Sun, M. J. Lee, Y. H. Lee, W. Lee, X. Song, and C. Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2014).
[Crossref] [PubMed]

S. C. Chen, P. C. Wu, and W. Lee, “Dielectric and phase behaviors of blue-phase liquid crystals,” Opt. Mater. Express 4(11), 2392–2400 (2014).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Lee, Y. H.

Lee, Y.-H.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Lin, C. H.

C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

Lockwood, N. A.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Luk, Y. Y.

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Manna, E. K.

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Markossian, K. A.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Markov, D. I.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Mermin, N. D.

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys. 61(2), 385–433 (1989).
[Crossref]

Miller, D. S.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Mohd Said, S.

M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
[Crossref] [PubMed]

Mohr, J. C.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Moriyama, Y.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Munir, S.

H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

S. Munir and S. Y. Park, “Liquid crystal-Based DNA biosensor for myricetin detection,” Sens. Actuators B Chem. 233, 559–565 (2016).
[Crossref]

Muranov, K. O.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Murphy, C. J.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Mushenheim, P. C.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Nguyen, T. T.

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

Nounesis, G.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Palecek, S. P.

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Park, S. Y.

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

S. Munir and S. Y. Park, “Liquid crystal-Based DNA biosensor for myricetin detection,” Sens. Actuators B Chem. 233, 559–565 (2016).
[Crossref]

H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Poliansky, N. B.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Popova, P.

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Rahman, M. D. A.

M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
[Crossref] [PubMed]

Raines, R. T.

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

Rozic, B.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Sharma, V.

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

Shin, J. H.

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

Shubin, V. V.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Sim, P. H.

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

Song, X.

Stein-Margolina, V. A.

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Su, H. W.

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

Su, H.-W.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Sun, S. H.

Sung, Y. C.

Takeda, K.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Tan, L. N.

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Thoen, J.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Tingey, M. L.

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

Tzitzios, V.

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

Watanabe, E.

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Woolverton, C. J.

S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
[Crossref] [PubMed]

Wright, D. C.

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys. 61(2), 385–433 (1989).
[Crossref]

Wu, P. C.

Xue, C. Y.

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yang, K. L.

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric Liquid Crystal Droplets for Biosensors,” ACS Appl. Mater. Interfaces 8(39), 26407–26417 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

N. A. Lockwood, J. C. Mohr, L. Ji, C. J. Murphy, S. P. Palecek, J. J. dePablo, and N. L. Abbott, “Thermotropic liquid crystals as substrates for imaging the reorganization of matrigel by human embryonic stem cells,” Adv. Funct. Mater. 16(5), 618–624 (2006).
[Crossref]

Adv. Mater. (1)

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Appl. Phys. Lett. (2)

C. H. Lin, M. J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

V. Sharma, A. Kumar, P. Ganguly, and A. M. Biradar, “Highly sensitive bovine serum albumin biosensor based on liquid crystal,” Appl. Phys. Lett. 104(4), 043705 (2014).
[Crossref]

Biomed. Opt. Express (2)

Int. J. Nanomedicine (1)

T. T. Nguyen, G. R. Han, C. H. Jang, and H. Ju, “Optical birefringence of liquid crystals for label-free optical biosensing diagnosis,” Int. J. Nanomedicine 10, 25–32 (2015).
[PubMed]

J. Am. Chem. Soc. (1)

T. Govindaraju, P. J. Bertics, R. T. Raines, and N. L. Abbott, “Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands,” J. Am. Chem. Soc. 129(36), 11223–11231 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

Y. Moriyama, E. Watanabe, K. Kobayashi, H. Harano, E. Inui, and K. Takeda, “Secondary structural change of bovine serum albumin in thermal denaturation up to 130 ° C and protective effect of sodium dodecyl sulfate on the change,” J. Phys. Chem. B 112(51), 16585–16589 (2008).
[Crossref] [PubMed]

Langmuir (3)

Y. Y. Luk, M. L. Tingey, D. J. Hall, B. A. Israel, C. J. Murphy, P. J. Bertics, and N. L. Abbott, “Using liquid crystals to amplify protein-receptor interactions: Design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors,” Langmuir 19(5), 1671–1680 (2003).
[Crossref]

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

V. J. Aliño, P. H. Sim, W. T. Choy, A. Fraser, and K. L. Yang, “Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots,” Langmuir 28(50), 17571–17577 (2012).
[Crossref] [PubMed]

Lett. Appl. Microbiol. (1)

S. L. Helfinstine, O. D. Lavrentovich, and C. J. Woolverton, “Lyotropic liquid crystal as a real-time detector of microbial immune complexes,” Lett. Appl. Microbiol. 43(1), 27–32 (2006).
[Crossref] [PubMed]

Liq. Cryst. Rev. (1)

R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, and N. L. Abbott, “Chemical and biological sensing using liquid crystals,” Liq. Cryst. Rev. 1(1), 29–51 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

E. Karatairi, B. Rozic, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(4 Pt 1), 041703 (2010).
[Crossref] [PubMed]

PLoS One (1)

V. A. Borzova, K. A. Markossian, N. A. Chebotareva, S. Y. Kleymenov, N. B. Poliansky, K. O. Muranov, V. A. Stein-Margolina, V. V. Shubin, D. I. Markov, and B. I. Kurganov, “Kinetics of thermal denaturation and aggregation of bovine serum albumin,” PLoS One 11(4), e0153495 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

D. C. Wright and N. D. Mermin, “Crystalline liquids: The blue phases,” Rev. Mod. Phys. 61(2), 385–433 (1989).
[Crossref]

Sci. Rep. (1)

M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal-based DNA biosensor for pathogen detection,” Sci. Rep. 6, 22676 (2016).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

M. D. A. Rahman, S. Mohd Said, and S. Balamurugan, “Blue phase liquid crystal: strategies for phase stabilization and device development,” Sci. Technol. Adv. Mater. 16(3), 033501 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

S. Munir and S. Y. Park, “Liquid crystal-Based DNA biosensor for myricetin detection,” Sens. Actuators B Chem. 233, 559–565 (2016).
[Crossref]

Sens. Biosensing Res. (1)

P. Popova, L. W. Honakerb, E. E. Kooijmanc, E. K. Manna, and A. I. Jáklib, “A liquid crystal biosensor for specific detection of antigens,” Sens. Biosensing Res. 8, 31–35 (2016).
[Crossref]

Struct. Bonding (1)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bonding 128, 99–117 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 System diagram of transmission spectroscopic measurement for the BPLC-based protein assay.
Fig. 2
Fig. 2 Phase sequence and optical textures of E7 doped with 30.1-wt% S811 at various phases observed at decreasing temperatures.
Fig. 3
Fig. 3 Effect of temperature on the optical texture and transmission spectrum of BPLC. (a) The change in optical texture of a BPLC with temperature. (b) The transmission spectra of a BPLC at various temperatures. (c) The reflection wavelength plotted against the temperature, giving two regions corresponding to two different BP structures.
Fig. 4
Fig. 4 Effect of BSA on the transmission spectrum of BPLC. (a) Transmission spectra of BPLCs in the presence of various concentrations of immobilized BSA at 37°C. (b) Correlation between reflection-peak wavelength and BSA concentration at three selected temperatures. The initial values were defined as the wavelengths in the first appearance of BP during the cooling process.
Fig. 5
Fig. 5 Correlation of wavelength difference to BSA concentration at 37°C.
Fig. 6
Fig. 6 Transmission spectra of the E7/S811 mixture in SmA phase in the presence of immobilized BSA of various concentrations at 20°C. Inset: optical texture of SmA in the presence of 10−3-g/ml BSA at 20°C.
Fig. 7
Fig. 7 Correlations of (a) the transmittance at 570 nm and (b) the transmittance integral between 550 and 700 nm to the BSA concentration in logarithm. The error bar is dominated by light scattering.

Metrics