Abstract

The infrared optical properties of textiles are of great importance in numerous applications, including infrared therapy and body thermoregulation. Tuning the spectral response of fabrics by the engineering of composite textile materials can produce fabrics targeted for use in these applications. We present spectroscopic data for engineered polyester fabric containing varying amounts of ceramic microparticles within the fiber core and report a spectrally-dependent shift in infrared reflectance, transmittance and absorptance. A thermal transport model is subsequently implemented to study the effect of these modified properties on the spectral distribution of infrared radiation incident upon the wearer of a garment constructed of this fabric.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineered emissivity of textile fabrics by the inclusion of ceramic particles

Matthew A. Pooley, David M. Anderson, Haskell W. Beckham, and James F. Brennan
Opt. Express 24(10) 10556-10564 (2016)

Textile integrated sensors and actuators for near-infrared spectroscopy

Christoph Zysset, Nassim Nasseri, Lars Büthe, Niko Münzenrieder, Thomas Kinkeldei, Luisa Petti, Stefan Kleiser, Giovanni A. Salvatore, Martin Wolf, and Gerhard Tröster
Opt. Express 21(3) 3213-3224 (2013)

Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling

Aru Kong, Boyuan Cai, Peng Shi, and Xiao-cong Yuan
Opt. Express 27(21) 30102-30115 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Warner, Fiber Science (Prentice Hall, 1995) pp. 213–229.
  2. US Patent, No: 5344297 (1994).
  3. M. A. Pooley, D. M. Anderson, H. W. Beckham, and J. F. Brennan, “Engineered emissivity of textile fabrics by the inclusion of ceramic particles,” Opt. Express 24(10), 10556–10564 (2016).
    [Crossref] [PubMed]
  4. W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
    [Crossref]
  5. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref] [PubMed]
  6. F. Vatansever and M. R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4(4), 255–266 (2012).
    [PubMed]
  7. J. D. Hardy and E. F. Dubois, “Regulation of heat loss from the human body,” Proc. Natl. Acad. Sci. U.S.A. 23(12), 624–631 (1937).
    [Crossref] [PubMed]
  8. C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).
  9. ASTM E408–13, Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques (ASTM International, 2013).
  10. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Ed. (John Wiley & Sons, 2002).
  11. G. Nellis and S. Klein, Heat Transfer (Cambridge University Press, 1997).
  12. E. A. Arens and H. Zhang, “The skin’s role in human thermoregulation and comfort” in Thermal and Moisture Transport in Fibrous Materials, N. Pan and P. Gibson, Eds. (Woodhead Publishing Limited, 2006).
  13. ASTM G173–03, Spectral Solar Irradiance (ASTM International, 2003).
  14. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (W.B. Saunders Company, 2000).

2016 (2)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

M. A. Pooley, D. M. Anderson, H. W. Beckham, and J. F. Brennan, “Engineered emissivity of textile fabrics by the inclusion of ceramic particles,” Opt. Express 24(10), 10556–10564 (2016).
[Crossref] [PubMed]

2012 (1)

F. Vatansever and M. R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4(4), 255–266 (2012).
[PubMed]

1997 (1)

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

1939 (1)

C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).

1937 (1)

J. D. Hardy and E. F. Dubois, “Regulation of heat loss from the human body,” Proc. Natl. Acad. Sci. U.S.A. 23(12), 624–631 (1937).
[Crossref] [PubMed]

Anderson, D. M.

Beckham, H. W.

Brennan, J. F.

Carr, W. W.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Catrysse, P. B.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Cui, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Do, B. T.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Dubois, E. F.

J. D. Hardy and E. F. Dubois, “Regulation of heat loss from the human body,” Proc. Natl. Acad. Sci. U.S.A. 23(12), 624–631 (1937).
[Crossref] [PubMed]

Fan, S.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Gagge, A. P.

C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).

Hamblin, M. R.

F. Vatansever and M. R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4(4), 255–266 (2012).
[PubMed]

Hardy, J. D.

J. D. Hardy and E. F. Dubois, “Regulation of heat loss from the human body,” Proc. Natl. Acad. Sci. U.S.A. 23(12), 624–631 (1937).
[Crossref] [PubMed]

Harrison, L. P.

C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Johnson, M. R.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Liu, C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Perkins, W. A.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Pooley, M. A.

Sarma, D. S.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Song, A. Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Vatansever, F.

F. Vatansever and M. R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4(4), 255–266 (2012).
[PubMed]

Williamson, V. A.

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Winslow, C.-E. A.

C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).

Xie, J.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Am. J. Physiol. (1)

C.-E. A. Winslow, A. P. Gagge, and L. P. Harrison, “The influence of air movement upon heat losses from the clothed human body,” Am. J. Physiol. 127(3), 508–515 (1939).

Opt. Express (1)

Photonics Lasers Med. (1)

F. Vatansever and M. R. Hamblin, “Far infrared radiation (FIR): its biological effects and medical applications,” Photonics Lasers Med. 4(4), 255–266 (2012).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. D. Hardy and E. F. Dubois, “Regulation of heat loss from the human body,” Proc. Natl. Acad. Sci. U.S.A. 23(12), 624–631 (1937).
[Crossref] [PubMed]

Science (1)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Text. Res. J. (1)

W. W. Carr, D. S. Sarma, M. R. Johnson, B. T. Do, V. A. Williamson, and W. A. Perkins, “Infrared absorption studies of fabrics,” Text. Res. J. 67(10), 725–738 (1997).
[Crossref]

Other (8)

ASTM E408–13, Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques (ASTM International, 2013).

F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Ed. (John Wiley & Sons, 2002).

G. Nellis and S. Klein, Heat Transfer (Cambridge University Press, 1997).

E. A. Arens and H. Zhang, “The skin’s role in human thermoregulation and comfort” in Thermal and Moisture Transport in Fibrous Materials, N. Pan and P. Gibson, Eds. (Woodhead Publishing Limited, 2006).

ASTM G173–03, Spectral Solar Irradiance (ASTM International, 2003).

A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (W.B. Saunders Company, 2000).

S. B. Warner, Fiber Science (Prentice Hall, 1995) pp. 213–229.

US Patent, No: 5344297 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustrating an FTIR setup for measurement of a) direct reflectance, b) direct transmittance, and c) indirect transmittance via change in reflectance
Fig. 2
Fig. 2 Spectral reflectance (ρλ), transmittance (τλ), and absorptance (αλ) in the mid-IR region for knit textile fabrics consisting of varying wt. % of ceramic contained in the fiber cores. All plots have a common y-scale ranging from 0 to 100%.
Fig. 3
Fig. 3 (Top) Spectral optical properties of the fabric samples containing the maximum (1.18 wt. %) and minimum (0 wt. %) added ceramic content. (Bottom) Normalized Planck’s distribution for a blackbody at 35°C.
Fig. 4
Fig. 4 Emittance of the fabric samples as a function of added ceramic material. Data points for the present work represent the mean of spectrally averaged emittance values from five independent samples. Two separate spectral ranges – 7.5-14 µm to match the detection range of the IR camera and the entire 2.5-16.7 µm measurement range – are utilized to calculate average emittance values.
Fig. 5
Fig. 5 Near-IR spectral reflectance (ρλ), transmittance (τλ), and absorptance (αλ) of the knit textile fabrics. Spectral data down to 3000 cm−1 are included; the data for wavenumbers from 3000 – 4000 cm−1 were collected using the mid-IR integrating sphere, illustrating that the data are continuous and consistent between setups and regardless of whether the direct or indirect approach was utilized to measure transmittance.
Fig. 6
Fig. 6 Fabric geometry and relevant modes of heat transfer
Fig. 7
Fig. 7 Comparison of spectral distribution of infrared radiation received by the skin in the near-IR (left) and mid-IR (right) regions for the maximum (1.18 wt. %) and minimum (0 wt. %) added ceramic content fabric.
Fig. 8
Fig. 8 Reflection from a semi-transparent sample with reflective backing.
Fig. 9
Fig. 9 Skin vascular system (adapted from Guyton and Hall, 2000) [14].

Tables (3)

Tables Icon

Table 1 Spectral average mid-IR optical properties at 35°C (2.5 – 16.7 µm)

Tables Icon

Table 2 Thermal model simulation parameters

Tables Icon

Table 3 Infrared radiation (2.5 – 16.7 µm) received by skin under various environmental and fit conditions

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

τ λ = [ ρ λ ρ λ 1+ j=1 ρ λ j ] 1/2
E b (λ,T)= C 1 λ 5 [ e C 2 /λ T 1 ]
ρ ¯ λ 1 λ 2 = ρ λ E b (λ,T)dλ E b (λ,T)dλ
τ ¯ λ 1 λ 2 = τ λ E b (λ,T)dλ E b (λ,T)dλ
ε ¯ λ 1 λ 2 = α ¯ λ 1 λ 2 = α λ E b (λ,T)dλ E b (λ,T)dλ
( J sf + Q i + J af )( J fs + J fa + Q o )=0
j af (λ)= E b (λ, T amb )+ j solar (λ)cos( θ s )
j fa (λ)= ε λ,fab E b (λ, T amb )+ ρ λ,fab j af (λ)+ τ λ,fab j sf (λ)
j sf (λ)= ε skin E b (λ, T skin )+ ρ skin j fs (λ)
j fs (λ)= ε λ,fab E b (λ, T fab )+ ρ λ,fab j sf (λ)+ τ λ,fab j af (λ)
j sf (λ)= ε skin E b (λ, T skin )+ ρ skin [ ε λ,fab E b (λ, T fab )+ τ λ,fab j af (λ) ] 1 ρ skin ρ λ,fab
ρ λ = ρ λ + τ λ 2 [ 1+ ρ λ + ρ λ 2 +... ]
ρ λ = ρ λ + τ λ 2 [ 1+ j=1 ρ λ j ]
Q= h ¯ ( T surface T surroundings )
Re L = ρ u L c μ
G r L = g L c 3 β| T amb T fab | ν 2
N u fc = 0.6674P r 1/3 R e L 1/2 [ 1+ ( 0.0468/Pr ) 2/3 ] 1/4
N u fc = 0.6674P r 1/3 R e crit 1/2 [ 1+ ( 0.0468/Pr ) 2/3 ] 1/4 +0.037P r 1/3 ( R e L 0.8 R e crit 0.8 )
N u nc,lam = 2.0 ln[ 1+ 2.0 / ( C lam R a L 1/4 ) ]
N u nc,turb = C turb,V R a L 1/3 1+( 1.4× 10 9 )Pr/R a L
C lam = 0.671 [ 1+ ( 0.492/Pr ) 9/16 ] 4/9
C turb,V = 0.13P r 0.22 [ 1+0.61P r 0.81 ] 0.42
N u nc = [ ( N u nc,lam ) 6 + ( N u nc,turb ) 6 ] 1/6
Nu= [ ( N u nc ) 3 + ( N u fc ) 3 ] 1/3
h ¯ o =Nu k fluid /w
R a b =G r b Pr= g b 3 β| T skin T fab | ν 2 Pr
Nu=1 R a b 1708
Nu=0.42R a b 1/4 P r 0.012 ( a/b ) 0.3 1708<R a b 10 6
Nu=0.046R a b 1/3 10 6 <R a b 10 9
h ¯ i =Nu k fluid /b
T skin = T dermis [ Q i + J sf J fs ] t epidermis / k epidermis

Metrics