Abstract

The size-dependent spectral variations, predicted by Mie theory, have already been considered as a contrast enhancement mechanism in optical coherence tomography. In this work, a new spectroscopic metric, the bandwidth of the correlation of the derivative, was developed for estimating scatterer size which is more robust and accurate compared to existing methods. Its feasibility was demonstrated using phantoms containing polystyrene microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be utilized for measuring nuclear size distribution, a diagnostically valuable marker, in human tissues.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

1 June 2017: A typographical correction was made to the title.


OSA Recommended Articles
Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques

Andreas Kartakoullis, Evgenia Bousi, and Costas Pitris
Opt. Express 18(9) 9181-9191 (2010)

Wavelength-dependent scattering in spectroscopic optical coherence tomography

Chenyang Xu, P. Scott Carney, and Stephen A. Boppart
Opt. Express 13(14) 5450-5462 (2005)

Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography

Volker Jaedicke, Semih Agcaer, Francisco E. Robles, Marian Steinert, David Jones, Sebastian Goebel, Nils C. Gerhardt, Hubert Welp, and Martin R. Hofmann
Biomed. Opt. Express 4(12) 2945-2961 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
    [Crossref] [PubMed]
  2. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
    [Crossref] [PubMed]
  3. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
    [Crossref]
  4. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett. 26(14), 1063–1065 (2001).
    [Crossref] [PubMed]
  5. C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
    [Crossref] [PubMed]
  6. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain Low-Coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003).
    [Crossref] [PubMed]
  7. J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
    [Crossref] [PubMed]
  8. J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
    [Crossref] [PubMed]
  9. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [Crossref] [PubMed]
  10. J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
    [Crossref] [PubMed]
  11. P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
    [Crossref] [PubMed]
  12. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
    [Crossref] [PubMed]
  13. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002).
    [Crossref] [PubMed]
  14. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
    [Crossref] [PubMed]
  15. H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
    [Crossref]
  16. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
    [Crossref] [PubMed]
  17. C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
    [Crossref] [PubMed]
  18. R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
    [Crossref] [PubMed]
  19. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [Crossref] [PubMed]
  20. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
    [Crossref] [PubMed]
  21. A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
    [Crossref]
  22. D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
    [Crossref] [PubMed]
  23. A. Kartakoullis, E. Bousi, and C. Pitris, “Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques,” Opt. Express 18(9), 9181–9191 (2010).
    [Crossref] [PubMed]
  24. V. Jaedicke, S. Agcaer, F. E. Robles, M. Steinert, D. Jones, S. Goebel, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Comparison of different metrics for analysis and visualization in spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(12), 2945–2961 (2013).
    [Crossref] [PubMed]
  25. B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
    [Crossref] [PubMed]
  26. D. Piao, Q. Zhu, N. K. Dutta, S. Yan, and L. L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40(28), 5124–5131 (2001).
    [Crossref] [PubMed]

2015 (1)

H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
[Crossref]

2013 (2)

2012 (1)

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

2011 (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

2007 (1)

A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
[Crossref]

2005 (2)

2004 (2)

2003 (2)

2002 (1)

2001 (2)

2000 (2)

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

1998 (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

1996 (1)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

1995 (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

1988 (1)

P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
[Crossref] [PubMed]

Adler, D.

Agcaer, S.

Arendt, J. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Backman, V.

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Badizadegan, K.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Bigio, I. J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Boppart, S.

A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
[Crossref]

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
[Crossref] [PubMed]

Bousi, E.

Boustany, N. N.

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Çapoglu, I. R.

Carney, P.

Chen, X.

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

Chow, T. H.

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Crawford, J. M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Dasari, R. R.

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002).
[Crossref] [PubMed]

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Dutta, N. K.

Feld, M. S.

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Figdor, C. G.

P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
[Crossref] [PubMed]

Fitzmaurice, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Fujimoto, J.

Gerhardt, N. C.

Goebel, S.

Graf, R.

Graf, R. N.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Gurjar, R.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Herz, P.

Hoekstra, A. G.

P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
[Crossref] [PubMed]

Hofmann, M. R.

Itzkan, I.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Izatt, J. A.

Jaedicke, V.

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Jones, D.

Kabani, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Kalashnikov, M.

Kartakoullis, A.

Kline, E.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Ko, T.

Kuo, S. C.

Lee, J.

Levin, H. S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Loh, T. K. S.

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

McGilligan, J. A.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Mourant, J. R.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Müller, G.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Müller, M. G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Ng, B. K.

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

Norris, S. C.

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Oldenburg, A.

A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
[Crossref]

Otis, L. L.

Perelman, L. T.

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Piao, D.

Pitris, C.

Pyhtila, J.

Pyhtila, J. W.

Radosevich, A. J.

Robles, F.

Robles, F. E.

Rogers, J. D.

Seck, H. L.

H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
[Crossref]

Seiler, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Shapshay, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Sharma, S.

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Sloot, P. M.

P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
[Crossref] [PubMed]

Soh, Y. C.

H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
[Crossref]

Steinert, M.

Taflove, A.

Tay, B. C. M.

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

Thakor, N. V.

Valdez, T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Van Dam, J.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Wallace, M. B.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
[Crossref] [PubMed]

F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
[Crossref] [PubMed]

J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
[Crossref] [PubMed]

J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
[Crossref] [PubMed]

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain Low-Coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003).
[Crossref] [PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19(4), 737–744 (2002).
[Crossref] [PubMed]

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

Welp, H.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Xu, C.

A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
[Crossref]

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
[Crossref] [PubMed]

Yan, S.

Yang, C.

Yi, J.

Zhang, Q.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Zhang, Y.

H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
[Crossref]

Zhu, Q.

Zhu, Y.

Zonios, G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Cytometry (1)

P. M. Sloot, A. G. Hoekstra, and C. G. Figdor, “Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations,” Cytometry 9(6), 636–641 (1988).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Oldenburg, C. Xu, and S. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

B. C. M. Tay, T. H. Chow, B. K. Ng, and T. K. S. Loh, “Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues,” IEEE Trans. Biomed. Eng. 59(9), 2439–2448 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[Crossref] [PubMed]

C. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, “Feasibility of field-based light scattering spectroscopy,” J. Biomed. Opt. 5(2), 138–143 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[Crossref] [PubMed]

Nature (1)

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Opt. Commun. (1)

H. L. Seck, Y. Zhang, and Y. C. Soh, “Contrast enhancement using Mie spectra representation for spectroscopic optical coherence tomography,” Opt. Commun. 338, 328–335 (2015).
[Crossref]

Opt. Express (8)

D. Adler, T. Ko, P. Herz, and J. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004).
[Crossref] [PubMed]

A. Kartakoullis, E. Bousi, and C. Pitris, “Scatterer size-based analysis of optical coherence tomography images using spectral estimation techniques,” Opt. Express 18(9), 9181–9191 (2010).
[Crossref] [PubMed]

J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
[Crossref] [PubMed]

J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
[Crossref] [PubMed]

J. Yi, A. J. Radosevich, J. D. Rogers, S. C. Norris, I. R. Çapoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?” Opt. Express 21(7), 9043–9059 (2013).
[Crossref] [PubMed]

C. Xu, P. Carney, and S. Boppart, “Wavelength-dependent scattering in spectroscopic optical coherence tomography,” Opt. Express 13(14), 5450–5462 (2005).
[Crossref] [PubMed]

R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
[Crossref] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Backscattering Mie Spectra for (A) 6 μm, (B) 10 μm and (C) 16 μm scatterers with medium and sphere refractive indices set at 1.47 and 1.59 respectively. The parameters for the calculations were chosen according to the specifications of the light source and the microsphere samples used in the experiments. Graphs D-F show the Correlation of the Derivative (COD) with the red dot indicating the first minimum and the red arrow indicating the bandwidth of the COD
Fig. 2
Fig. 2 Correlation of the Derivative (COD) bandwidth plotted as a function of scatterer size. The blue line corresponds to the theoretical curve and the green line to the 4th order approximation curve. Reliable scatterer estimation can be performed only in the region above 4 μm which demonstrates a fairly monotonic relationship (solid red line).
Fig. 3
Fig. 3 Curves illustrating the COD bandwidth dependence on matrix index of refraction (A), source bandwidth (B), and source wavelength (B & C). Reliable scatterer estimation can be performed only in the region above 4 μm (solid lines).
Fig. 4
Fig. 4 (A) Portion of an OCT image of a 16μm microsphere phantom. The green rectangle shows the extent of the Gaussian window used while the shorter red rectangle denotes the Gaussian standard deviation of this window (B) Depth-resolved spectrum corresponding to the region marked in (A). (C) Spectrum of the light source. (D) The ratio of the depth-resolved spectrum and the source spectrum corresponding to the backscattering spectrum of the sample in the examined spatial region. (E) Derivative of the spectrum in D. (F) Autocorelation of the derivative in E. (The red dot indicates the first minimum.)
Fig. 5
Fig. 5 Dependence of the backscattering spectrum on the axial location of the Gaussian window. On the top are portions of OCT images of a phantom with 10 μm diameter microspheres and at the bottom are the resulting backscattering spectra. Centering on (A), above (B), and below (C) the microsphere only affects the intensity but not the shape of the spectrum.
Fig. 6
Fig. 6 Dependence of the backscattering spectum on the lateral location of the Gaussian window. On the top are portions of OCT images of a phantom with 10 μm diameter microspheres and at the bottom are the resulting backscattering spectra. Centering on (A), left (B), and right (C) of the microsphere affects both the intensity and the shape of the spectrum.
Fig. 7
Fig. 7 Spectroscopic images of the microsphere samples. SOCT images of the (A) 6 μm, (B) 10 μm, and (C) 16 μm microsphere samples with corresponding histograms of scatterer size distribution (D-F).
Fig. 8
Fig. 8 (A) Portion of an OCT image of normal colon tissue. (B) The filtered scatterer spectrum corresponding o the Gaussian window indicated in A (Green line: extend, Red: standard deviation). (C) The derivative of the spectrum in B. (D) The autocorrelation of the derivative in C (Red dot: the first minimum). The Gaussian window used was 75 μm. (E-H) The same as above for colon adenocarcinoma with a Gaussian window of 225 μm.
Fig. 9
Fig. 9 OCT image (A) and corresponding histology (B), the spectroscopic image (C) and histogram of scatterer size distribution (D) of normal human colon. Adenocarcinoma of the colon images are also shown (E-H).
Fig. 10
Fig. 10 Histograms of the distribution of the mean scatterer size of the normal and fourteen tissue images.

Metrics