Abstract

Optical coherence tomography (OCT) has become an important imaging modality with numerous biomedical applications. Challenges in high-speed, high-resolution, volumetric OCT imaging include managing dispersion, the trade-off between transverse resolution and depth-of-field, and correcting optical aberrations that are present in both the system and sample. Physics-based computational imaging techniques have proven to provide solutions to these limitations. This review aims to outline these computational imaging techniques within a general mathematical framework, summarize the historical progress, highlight the state-of-the-art achievements, and discuss the present challenges.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
    [Crossref] [PubMed]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [Crossref] [PubMed]
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
    [Crossref] [PubMed]
  5. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
    [Crossref] [PubMed]
  6. B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
    [Crossref] [PubMed]
  7. N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
    [Crossref] [PubMed]
  8. S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
    [Crossref] [PubMed]
  9. J. G. Fujimoto and E. A. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).
    [Crossref] [PubMed]
  10. A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II,” J. Appl. Phys. 35(10), 2722–2727 (1964).
    [Crossref]
  11. G. N. Hounsfield, “Computerized transverse axial scanning (tomography). 1. Description of system,” Br. J. Radiol. 46(552), 1016–1022 (1973).
    [Crossref] [PubMed]
  12. P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242(5394), 190–191 (1973).
    [Crossref]
  13. P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8(4), 343–358 (1997).
    [Crossref]
  14. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
    [Crossref] [PubMed]
  15. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  16. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  17. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
    [Crossref] [PubMed]
  18. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  19. A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
    [Crossref] [PubMed]
  20. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
    [Crossref] [PubMed]
  21. J. M. Schmitt, “Restroation of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
    [Crossref] [PubMed]
  22. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
    [Crossref] [PubMed]
  23. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
    [Crossref]
  24. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
    [Crossref] [PubMed]
  25. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40(31), 5787–5790 (2001).
    [Crossref] [PubMed]
  26. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42(2), 204–217 (2003).
    [Crossref] [PubMed]
  27. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
    [Crossref] [PubMed]
  28. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  29. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [Crossref] [PubMed]
  30. A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
    [Crossref] [PubMed]
  31. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
    [Crossref]
  32. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
    [Crossref]
  33. K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
    [Crossref] [PubMed]
  34. B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
    [Crossref] [PubMed]
  35. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [Crossref] [PubMed]
  36. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  37. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  38. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
    [Crossref] [PubMed]
  39. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
    [Crossref] [PubMed]
  40. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
    [Crossref] [PubMed]
  41. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [Crossref] [PubMed]
  42. H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
    [Crossref] [PubMed]
  43. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
    [Crossref] [PubMed]
  44. J. Mo, M. de Groot, and J. F. de Boer, “Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth,” Opt. Express 23(4), 4935–4945 (2015).
    [Crossref] [PubMed]
  45. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
    [Crossref] [PubMed]
  46. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [Crossref] [PubMed]
  47. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
    [Crossref] [PubMed]
  48. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express 19(19), 18135–18148 (2011).
    [Crossref] [PubMed]
  49. E. Bousi and C. Pitris, “Lateral resolution improvement in Optical Coherence Tomography (OCT) images,” in Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (IEEE, 2012), pp. 598–601.
    [Crossref]
  50. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
    [Crossref] [PubMed]
  51. A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
    [Crossref]
  52. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
    [Crossref] [PubMed]
  53. A. F. Fercher, “Inverse scattering and aperture synthesis in OCT,” in Optical Coherence Tomography Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2015), pp. 143–164.
  54. A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, “Image formation by inversion of scattered field data: experiments and computational simulation,” Appl. Opt. 18(14), 2427–2439 (1979).
    [Crossref] [PubMed]
  55. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
    [Crossref] [PubMed]
  56. D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
    [Crossref] [PubMed]
  57. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, 1996).
  58. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
    [Crossref] [PubMed]
  59. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
    [Crossref] [PubMed]
  60. R. H. Stolt, “Migration by Fourier-Transform,” Geophysics 43(1), 23–48 (1978).
    [Crossref]
  61. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
    [Crossref] [PubMed]
  62. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
    [Crossref] [PubMed]
  63. D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
    [Crossref] [PubMed]
  64. F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
    [Crossref] [PubMed]
  65. T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
    [Crossref] [PubMed]
  66. X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
    [Crossref]
  67. X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
    [Crossref]
  68. C. J. R. Sheppard, S. S. Kou, and C. Depeursinge, “Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy,” J. Opt. Soc. Am. A 29(3), 244–250 (2012).
    [Crossref] [PubMed]
  69. M. S. Heimbeck, D. L. Marks, D. Brady, and H. O. Everitt, “Terahertz interferometric synthetic aperture tomography for confocal imaging systems,” Opt. Lett. 37(8), 1316–1318 (2012).
    [Crossref] [PubMed]
  70. L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
    [Crossref]
  71. A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).
  72. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  73. F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
    [Crossref] [PubMed]
  74. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
    [Crossref] [PubMed]
  75. S. W. Lasswell, “History of SAR at Lockheed Martin (previously Goodyear Aerospace),” Proc. SPIE 5788, 1–12 (2005).
    [Crossref]
  76. C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
    [Crossref]
  77. L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
    [Crossref]
  78. L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
    [Crossref]
  79. W. Brown and L. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectr. 6(9), 52–62 (1969).
    [Crossref]
  80. M. P. Hayes and P. T. Gough, “Broad-band synthetic aperture sonar,” IEEE J. Oceanic Eng. 17(1), 80–94 (1992).
    [Crossref]
  81. S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
    [Crossref]
  82. T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
    [Crossref] [PubMed]
  83. M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref] [PubMed]
  84. A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
    [Crossref]
  85. “Diagnostic Photonics, Inc,” http://diagnosticphotonics.com .
  86. A. Wax and V. Backman, eds., “Interferometric Synthetic Aperture Microscopy,” in Biomedical Applications of Light Scattering (McGraw-Hill Professional, 2010).
  87. A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
    [Crossref] [PubMed]
  88. E. N. Leith, “Quasi-holographic techniques in the microwave region,” Proc. IEEE 59(9), 1305–1318 (1971).
    [Crossref]
  89. L. Yu and Z. Chen, “Digital holographic tomography based on spectral interferometry,” Opt. Lett. 32(20), 3005–3007 (2007).
    [Crossref] [PubMed]
  90. U. Schnars and W. Jueptner, Digital Holography (Springer, 2010).
  91. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 18005 (2010).
  92. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy - holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [Crossref] [PubMed]
  93. A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
    [Crossref]
  94. Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
    [Crossref] [PubMed]
  95. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [Crossref] [PubMed]
  96. G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express 3(11), 2774–2783 (2012).
    [Crossref] [PubMed]
  97. Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
    [Crossref]
  98. D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
    [Crossref]
  99. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
    [Crossref] [PubMed]
  100. G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express 21(24), 29955–29967 (2013).
    [Crossref] [PubMed]
  101. A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, “Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination,” Appl. Opt. 53(8), 1697–1708 (2014).
    [Crossref] [PubMed]
  102. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
    [Crossref] [PubMed]
  103. S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
    [Crossref]
  104. Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
    [Crossref] [PubMed]
  105. F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
    [Crossref]
  106. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  107. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  108. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  109. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
    [Crossref] [PubMed]
  110. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  111. R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
    [Crossref] [PubMed]
  112. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  113. M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
    [Crossref] [PubMed]
  114. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [Crossref] [PubMed]
  115. E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).
  116. S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
    [Crossref] [PubMed]
  117. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [Crossref] [PubMed]
  118. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [Crossref] [PubMed]
  119. Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
    [Crossref] [PubMed]
  120. H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
    [Crossref]
  121. Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
    [Crossref] [PubMed]
  122. P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
    [Crossref] [PubMed]
  123. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  124. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref] [PubMed]
  125. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [Crossref] [PubMed]
  126. D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
    [Crossref] [PubMed]
  127. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
    [Crossref] [PubMed]
  128. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [Crossref] [PubMed]
  129. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
    [Crossref] [PubMed]
  130. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
    [Crossref] [PubMed]
  131. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
    [Crossref] [PubMed]
  132. D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
    [Crossref]
  133. D. Hillmann, H. Spahr, G. L. Franke, C. Hain, H. M. Sudkamp, and G. Hüttmann, “Numerical aberration correction in optical coherence tomography and holoscopy by optimization of image quality,” Presented at SPIE Photonics West, San Francisco, CA, February. (2015).
  134. N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
    [Crossref]
  135. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
    [Crossref] [PubMed]
  136. D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
    [Crossref]
  137. T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
    [Crossref]
  138. N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
    [Crossref] [PubMed]
  139. N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
    [Crossref] [PubMed]
  140. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
    [Crossref] [PubMed]
  141. C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
    [Crossref] [PubMed]
  142. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  143. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
    [Crossref] [PubMed]
  144. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
    [Crossref]
  145. N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
    [Crossref] [PubMed]
  146. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
    [Crossref] [PubMed]

2016 (12)

J. G. Fujimoto and E. A. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
[Crossref] [PubMed]

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
[Crossref] [PubMed]

2015 (13)

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

J. Mo, M. de Groot, and J. F. de Boer, “Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth,” Opt. Express 23(4), 4935–4945 (2015).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

2014 (13)

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
[Crossref] [PubMed]

A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, “Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination,” Appl. Opt. 53(8), 1697–1708 (2014).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

2013 (7)

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
[Crossref] [PubMed]

G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express 21(24), 29955–29967 (2013).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

2012 (13)

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

C. J. R. Sheppard, S. S. Kou, and C. Depeursinge, “Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy,” J. Opt. Soc. Am. A 29(3), 244–250 (2012).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
[Crossref] [PubMed]

M. S. Heimbeck, D. L. Marks, D. Brady, and H. O. Everitt, “Terahertz interferometric synthetic aperture tomography for confocal imaging systems,” Opt. Lett. 37(8), 1316–1318 (2012).
[Crossref] [PubMed]

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
[Crossref] [PubMed]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
[Crossref] [PubMed]

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express 3(11), 2774–2783 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (9)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 18005 (2010).

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[Crossref] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[Crossref] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (2)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

2007 (8)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
[Crossref] [PubMed]

L. Yu and Z. Chen, “Digital holographic tomography based on spectral interferometry,” Opt. Lett. 32(20), 3005–3007 (2007).
[Crossref] [PubMed]

2006 (9)

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

2005 (6)

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

S. W. Lasswell, “History of SAR at Lockheed Martin (previously Goodyear Aerospace),” Proc. SPIE 5788, 1–12 (2005).
[Crossref]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

2004 (4)

2003 (4)

2002 (3)

2001 (4)

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40(31), 5787–5790 (2001).
[Crossref] [PubMed]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

1999 (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

1998 (3)

J. M. Schmitt, “Restroation of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

1997 (3)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8(4), 343–358 (1997).
[Crossref]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

1996 (1)

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

1992 (1)

M. P. Hayes and P. T. Gough, “Broad-band synthetic aperture sonar,” IEEE J. Oceanic Eng. 17(1), 80–94 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1979 (1)

1978 (1)

R. H. Stolt, “Migration by Fourier-Transform,” Geophysics 43(1), 23–48 (1978).
[Crossref]

1973 (2)

G. N. Hounsfield, “Computerized transverse axial scanning (tomography). 1. Description of system,” Br. J. Radiol. 46(552), 1016–1022 (1973).
[Crossref] [PubMed]

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242(5394), 190–191 (1973).
[Crossref]

1971 (1)

E. N. Leith, “Quasi-holographic techniques in the microwave region,” Proc. IEEE 59(9), 1305–1318 (1971).
[Crossref]

1969 (1)

W. Brown and L. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectr. 6(9), 52–62 (1969).
[Crossref]

1966 (1)

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

1964 (1)

A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II,” J. Appl. Phys. 35(10), 2722–2727 (1964).
[Crossref]

1962 (1)

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
[Crossref]

1960 (1)

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

Adie, S. G.

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

Agard, D. A.

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

Aguirre, A. D.

Ahmad, A.

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Ahn, S. S.

Alex, A.

Ali, M.

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

An, F. A.

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

Anderson, T.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Artal, P.

Aspert, N.

Avanaki, M. R. N.

Bachman, M.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Bachmann, A. H.

Bagnara, P.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Bartelt, H.

Baruffolo, A.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Baumann, B.

Becker, H.

Betzig, E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Bizheva, K.

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

Blatter, C.

Boccara, A. C.

Bonin, T.

Bonora, S.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Boppart, M. D.

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

Boppart, S. A.

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42(2), 204–217 (2003).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
[Crossref]

Boroomand, A.

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

Bouma, B.

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

Bourquin, S.

Bousi, E.

E. Bousi and C. Pitris, “Lateral resolution improvement in Optical Coherence Tomography (OCT) images,” in Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (IEEE, 2012), pp. 598–601.
[Crossref]

Bower, A. J.

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

Braaf, B.

Bradley, A.

Brady, D.

Brast, R.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Brown, W.

W. Brown and L. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectr. 6(9), 52–62 (1969).
[Crossref]

Cable, A. E.

Canner, J. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Carney, P. S.

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
[Crossref]

Cense, B.

Chaney, E. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Charrière, F.

Chen, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Chen, N.

Chen, T.

Chen, X.

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

Chen, Z.

Cheng, K. H. Y.

Cheng, X.

Choi, H.

Choi, W. J.

Cittadine, A. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Colomb, T.

Consortium, C.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Cormack, A. M.

A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II,” J. Appl. Phys. 35(10), 2722–2727 (1964).
[Crossref]

Corso, A. L.

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

Courtney, B.

Cradock, K. A.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Cua, M.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Cuche, E.

Cutrona, L.

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

Cutrona, L. J.

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

Darbarsyah, B.

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Darga, D.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

David, G.

Davis, B. J.

de Boer, J.

de Boer, J. F.

de Groot, M.

De Lisio, M.

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

Delabre, B.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Dellinger, J.

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

Denk, W.

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Depeursinge, C.

Ding, Z.

Divetia, A.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Donaldson, R.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Drexler, W.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Dubois, A.

DuBose, T.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Duker, J.

Endo, T.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Erickson-Bhatt, S. J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Etgen, J.

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

Everitt, H. O.

Farsiu, S.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Fechtig, D. J.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

Federici, A.

Fedrigo, E.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Felberer, F.

Fercher, A.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, “Image formation by inversion of scattered field data: experiments and computational simulation,” Appl. Opt. 18(14), 2427–2439 (1979).
[Crossref] [PubMed]

Ferguson, R. A.

Fernández, E. J.

Ferra, H.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Fienup, J. R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Frank, C.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Franke, G.

Frisken, G.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Frisken, S.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

J. G. Fujimoto and E. A. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).
[Crossref] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gabrielson, E.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Gelikonov, G. V.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Gelikonov, V. M.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Gigan, S.

Ginner, L.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

Götzinger, E.

Gough, P. T.

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8(4), 343–358 (1997).
[Crossref]

M. P. Hayes and P. T. Gough, “Broad-band synthetic aperture sonar,” IEEE J. Oceanic Eng. 17(1), 80–94 (1992).
[Crossref]

Graf, B. W.

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Grajciar, B.

Grasel, J. T.

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

Gray, S. H.

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

Grebenyuk, A.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grimwood, A.

Guo, S.

Gustafsson, M. G. L.

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

Ha, J.

Hagen-Eggert, M.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

Hanser, B.

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

Hart, C.

Haskell, R. C.

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

Hawkins, D. W.

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8(4), 343–358 (1997).
[Crossref]

Hayes, M. P.

M. P. Hayes and P. T. Gough, “Broad-band synthetic aperture sonar,” IEEE J. Oceanic Eng. 17(1), 80–94 (1992).
[Crossref]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heimbeck, M. S.

Hermann, B.

Hillmann, D.

Hitzenberger, C.

Hitzenberger, C. K.

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
[Crossref] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Hofer, H.

Hojjatoleslami, S. A.

Hong, X.

Hounsfield, G. N.

G. N. Hounsfield, “Computerized transverse axial scanning (tomography). 1. Description of system,” Br. J. Radiol. 46(552), 1016–1022 (1973).
[Crossref] [PubMed]

Howe, W. C.

Hsieh, T. H.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Hu, Z.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-W.

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Huber, R.

Hubin, N.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Hüttmann, G.

Hwu, W.-M. W.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Ibrahim, S. F.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Ishikawa, H.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

Itoh, M.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

Izatt, J. A.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Jacobs, L. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Jang, J.

Jang, W.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Jian, Y.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Jiang, J. Y.

Jonnal, R. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

Jung, W.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kam, Z.

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

Kamali, T.

Karamata, B.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

Khoudeir, L.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Kim, H.-S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Kim, J.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Kim, J. W.

Kim, J.-Y.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 18005 (2010).

Ko, T.

Kocaoglu, O. P.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

Koch, P.

Kolb, J.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Kou, S. S.

Kowalczyk, A.

Kroisamer, J.-S.

Kühn, J.

Kumar, A.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

Kurokawa, K.

Labiau, S.

Labriola, L. T.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

LaRocca, F.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Lasser, T.

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

Lasswell, S. W.

S. W. Lasswell, “History of SAR at Lockheed Martin (previously Goodyear Aerospace),” Proc. SPIE 5788, 1–12 (2005).
[Crossref]

Lauterbur, P. C.

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242(5394), 190–191 (1973).
[Crossref]

Lee, B. H.

Lee, K. K. C.

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lee, K.-S.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Lee, S.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

Lei, Y.

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

Leitgeb, R. A.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

Leith, E.

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

Leith, E. N.

E. N. Leith, “Quasi-holographic techniques in the microwave region,” Proc. IEEE 59(9), 1305–1318 (1971).
[Crossref]

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

Leung, M. K. K.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Li, C.

Li, G. P.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Li, M.-L.

Li, Q.

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

Liang, J.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

Liang, Y.

Lim, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, C.

Liu, G.

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
[Crossref] [PubMed]

Liu, Y.

Liu, Y.-Z.

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
[Crossref] [PubMed]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

Liu, Z.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

Liu, Z. G.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Lizon, J.-L.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Lorenser, D.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Lührs, C.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Makita, S.

Marchesi, M.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Marchetti, E.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Mariampillai, A.

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Marian, A.

Marjanovic, M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

Marks, D. L.

M. S. Heimbeck, D. L. Marks, D. Brady, and H. O. Everitt, “Terahertz interferometric synthetic aperture tomography for confocal imaging systems,” Opt. Lett. 37(8), 1316–1318 (2012).
[Crossref] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42(2), 204–217 (2003).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
[Crossref]

Marotta, T. R.

Marquet, P.

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Maslov, K.

May Gonzalez, E. A.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

McCormick, D. T.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Meemon, N.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Mesiwala, N. K.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Miller, D. T.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

Miller, J. J.

Min, G.

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Mo, J.

Moiseev, A. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Monroy, G. L.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

Montfort, F.

Morris, G. M. M.

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

Mu, G.

Mulligan, J. A.

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Munce, N. R.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nakamura, Y.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

Nankivil, D.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Nassif, N.

Nelson, J. S.

Nelson, T. R.

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

Nguyen, C. T.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Nolan, R. M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Nolte, F.

Novak, M.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Oberti, S.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Oh, W.-Y.

Oldenburg, A. L.

Palermo, C.

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

Pande, P.

Park, B.

Park, J.-H.

Park, Y.

Pfäffle, C.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

Pierce, M.

Pircher, M.

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

E. Bousi and C. Pitris, “Lateral resolution improvement in Optical Coherence Tomography (OCT) images,” in Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (IEEE, 2012), pp. 598–601.
[Crossref]

Platzer, R.

Podoleanu, A. G.

Porcello, L.

W. Brown and L. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectr. 6(9), 52–62 (1969).
[Crossref]

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

Porcello, L. J.

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

Porter, J.

Pretorius, D. H.

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Putney, J.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Queener, H.

Ralston, T. S.

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
[Crossref]

Rao, B.

Rawcliffe, R. D.

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
[Crossref]

Ray, P. S.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Reiss, R.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Ren, H.

Reynolds, J. J.

Rolland, J. P.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Rollins, A.

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Ruina, J. P.

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
[Crossref]

Ryabukho, V.

Sando, Y.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

Sandrian, M. G.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

Santos, J.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Sarunic, M. V.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Sasaki, K.

Sattmann, H.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Sawinski, J.

Sawyer, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Saxer, C. E.

Schlachter, S. C.

Schmidt-Erfurth, U.

Schmitt, J. M.

J. M. Schmitt, “Restroation of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

Schmoll, T.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

Schneider, E. B.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Schuman, J. S.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scott Carney, P.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Sedat, J. W.

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

Segref, A.

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

Shafiee, M. J.

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

Shelton, R.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

Shemonski, N.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

Shemonski, N. D.

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Sheppard, C. J. R.

Sherwin, C. W.

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
[Crossref]

Shilyagin, P. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Sicam, V. A. D. P.

Soenke, C.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

South, F.

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

South, F. A.

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

Sredar, N.

Srinivasan, V.

St. Marie, L. R.

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

Standish, B. A.

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Steinmann, L.

Stewart, C. N.

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stoica, G.

Stolt, R. H.

R. H. Stolt, “Migration by Fourier-Transform,” Geophysics 43(1), 23–48 (1978).
[Crossref]

Su, J.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

Sugisaka, J.

Sugisaka, J. I.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Sun, C.

Sundaram, M.

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Swanson, E. A.

J. G. Fujimoto and E. A. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tafra, L.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Tang, H.

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

Tawbi, H. A.

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

Terpelov, D. A.

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Thibos, L. N.

Tomlins, P. H.

Tordo, S.

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Toth, C. A.

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tsuchiya, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Unterhuber, A.

Untracht, G. R.

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

Valero, M. C.

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Villiger, M.

Vitkin, I. A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Vivian, E. W.

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

Vuong, B.

Wahl, D. J.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

Wang, K.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Wang, L. V.

Wang, Q.

Wang, R. K.

Wang, Y.

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

Weingast, J.

Werner, J. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

Whitmore, D.

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

Wieser, W.

Williams, D. R.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

Wiltschko, E.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

Wojtkowski, M.

Wong, A.

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

Wong, K. S. K.

Woolliams, P. D.

Wurster, L. M.

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

Xu, Y.

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, V. X. D.

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

Yousefi, S.

Yu, D.

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

Yu, H.

Yu, L.

Yun, S. H.

Yun, S.-H.

Zawadzki, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

Zawadzki, R. J.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Zhang, H. E.

Zhang, J.

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Zhang, X.

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

Zhao, H.

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

Zhao, Y.

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

Zhi, Z.

Zhou, C.

Zhu, X.

Zotter, S.

Zysk, A. M.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Ann. Surg. Oncol. (1)

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref] [PubMed]

Appl. Opt. (8)

A. Grebenyuk, A. Federici, V. Ryabukho, and A. Dubois, “Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination,” Appl. Opt. 53(8), 1697–1708 (2014).
[Crossref] [PubMed]

Y. Xu, Y.-Z. Liu, S. A. Boppart, and P. S. Carney, “Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography,” Appl. Opt. 55(8), 2034–2041 (2016).
[Crossref] [PubMed]

J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40(31), 5787–5790 (2001).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media,” Appl. Opt. 42(2), 204–217 (2003).
[Crossref] [PubMed]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
[Crossref] [PubMed]

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. G. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy-Richardson deconvolution algorithm,” Appl. Opt. 52(23), 5663–5670 (2013).
[Crossref] [PubMed]

A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, “Image formation by inversion of scattered field data: experiments and computational simulation,” Appl. Opt. 18(14), 2427–2439 (1979).
[Crossref] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

F. A. South, Y.-Z. Liu, Y. Xu, N. D. Shemonski, P. S. Carney, and S. A. Boppart, “Polarization-sensitive interferometric synthetic aperture microscopy,” Appl. Phys. Lett. 107(21), 211106 (2015).
[Crossref] [PubMed]

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

S. G. Adie, N. D. Shemonski, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Guide-star-based computational adaptive optics for broadband interferometric tomography,” Appl. Phys. Lett. 101(22), 221117 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (9)

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

Y.-Z. Liu, N. D. Shemonski, S. G. Adie, A. Ahmad, A. J. Bower, P. S. Carney, and S. A. Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988–3000 (2014).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).
[Crossref] [PubMed]

C. Sun, F. Nolte, K. H. Y. Cheng, B. Vuong, K. K. C. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, and V. X. D. Yang, “In vivo feasibility of endovascular Doppler optical coherence tomography,” Biomed. Opt. Express 3(10), 2600–2610 (2012).
[Crossref] [PubMed]

G. Liu, Z. Zhi, and R. K. Wang, “Digital focusing of OCT images based on scalar diffraction theory and information entropy,” Biomed. Opt. Express 3(11), 2774–2783 (2012).
[Crossref] [PubMed]

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
[Crossref] [PubMed]

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3(10), 2636–2646 (2012).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5(12), 4131–4143 (2014).
[Crossref] [PubMed]

Br. J. Radiol. (1)

G. N. Hounsfield, “Computerized transverse axial scanning (tomography). 1. Description of system,” Br. J. Radiol. 46(552), 1016–1022 (1973).
[Crossref] [PubMed]

Cancer Res. (1)

S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref] [PubMed]

Geophysics (2)

R. H. Stolt, “Migration by Fourier-Transform,” Geophysics 43(1), 23–48 (1978).
[Crossref]

S. H. Gray, J. Etgen, J. Dellinger, and D. Whitmore, “Seismic migration problems and solutions,” Geophysics 66(5), 1622–1640 (2001).
[Crossref]

IEEE J. Oceanic Eng. (1)

M. P. Hayes and P. T. Gough, “Broad-band synthetic aperture sonar,” IEEE J. Oceanic Eng. 17(1), 80–94 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. A. South, Y.-Z. Liu, P. S. Carney, and S. A. Boppart, “Computed optical interferometric imaging: methods, achievements, and challenges,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800911 (2016).
[Crossref] [PubMed]

IEEE Spectr. (1)

W. Brown and L. Porcello, “An introduction to synthetic-aperture radar,” IEEE Spectr. 6(9), 52–62 (1969).
[Crossref]

IEEE Trans. Image Process. (1)

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process. 14(9), 1254–1264 (2005).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[Crossref] [PubMed]

Int. J. Imaging Syst. Technol. (1)

P. T. Gough and D. W. Hawkins, “Unified framework for modern synthetic aperture imaging algorithms,” Int. J. Imaging Syst. Technol. 8(4), 343–358 (1997).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

J. G. Fujimoto and E. A. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016).
[Crossref] [PubMed]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, Z. Liu, D. T. Miller, and J. S. Werner, “A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).
[Crossref] [PubMed]

IRE Trans. Inf. Theory (1)

L. Cutrona, E. Leith, C. Palermo, and L. Porcello, “Optical data processing and filtering systems,” IRE Trans. Inf. Theory 6(3), 386–400 (1960).
[Crossref]

IRE Trans. Mil. Electron. (1)

C. W. Sherwin, J. P. Ruina, and R. D. Rawcliffe, “Some early developments in synthetic aperture radar systems,” IRE Trans. Mil. Electron. 6(2), 111–115 (1962).
[Crossref]

J. Appl. Phys. (1)

A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications. II,” J. Appl. Phys. 35(10), 2722–2727 (1964).
[Crossref]

J. Biomed. Opt. (2)

K.-S. Lee, H. Zhao, S. F. Ibrahim, N. Meemon, L. Khoudeir, and J. P. Rolland, “Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy,” J. Biomed. Opt. 17(12), 126006 (2012).
[Crossref] [PubMed]

J. M. Schmitt, “Restroation of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3(1), 66–75 (1998).
[Crossref] [PubMed]

J. Biophotonics (1)

B. W. Graf, A. J. Bower, E. J. Chaney, M. Marjanovic, S. G. Adie, M. De Lisio, M. C. Valero, M. D. Boppart, and S. A. Boppart, “In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration,” J. Biophotonics 7(1-2), 96–102 (2014).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “SD-OCT image reconstruction by interferometeric synthetic aperture microscopy,” J. Innov. Opt. Health Sci. 3(1), 17–23 (2010).
[Crossref]

J. Mod. Opt. (2)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

J. Ophthalmic Inflamm. Infect. (1)

N. K. Mesiwala, N. Shemonski, M. G. Sandrian, R. Shelton, H. Ishikawa, H. A. Tawbi, J. S. Schuman, S. A. Boppart, and L. T. Labriola, “Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma,” J. Ophthalmic Inflamm. Infect. 5(1), 25 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (11)

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23(5), 1027–1037 (2006).
[Crossref] [PubMed]

C. J. R. Sheppard, S. S. Kou, and C. Depeursinge, “Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy,” J. Opt. Soc. Am. A 29(3), 244–250 (2012).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24(4), 1034–1041 (2007).
[Crossref] [PubMed]

D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 26(2), 376–386 (2009).
[Crossref] [PubMed]

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[Crossref] [PubMed]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Inverse scattering for rotationally scanned optical coherence tomography,” J. Opt. Soc. Am. A 23(10), 2433–2439 (2006).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

Y. Nakamura, J. I. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys. 46(4A), 1774–1778 (2007).
[Crossref]

Laser Phys. Lett. (1)

A. A. Moiseev, G. V. Gelikonov, D. A. Terpelov, P. A. Shilyagin, and V. M. Gelikonov, “Digital refocusing for transverse resolution improvement in optical coherence tomography,” Laser Phys. Lett. 9(11), 826–832 (2012).
[Crossref]

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Messenger (Los Angel.) (1)

E. Marchetti, R. Brast, B. Delabre, R. Donaldson, E. Fedrigo, C. Frank, N. Hubin, J. Kolb, J.-L. Lizon, M. Marchesi, S. Oberti, R. Reiss, J. Santos, C. Soenke, S. Tordo, A. Baruffolo, P. Bagnara, and C. Consortium, “On-sky testing of the multi-conjugate adaptive optics demonstrator,” Messenger (Los Angel.) 129, 8–13 (2007).

Nat. Med. (3)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1(9), 970–972 (1995).
[Crossref] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4(7), 861–865 (1998).
[Crossref] [PubMed]

Nat. Methods (2)

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

F. LaRocca, D. Nankivil, T. DuBose, C. A. Toth, S. Farsiu, and J. A. Izatt, “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).
[Crossref]

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci. 5(3), 229–240 (2004).
[Crossref] [PubMed]

Nature (1)

P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242(5394), 190–191 (1973).
[Crossref]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique,” Opt. Commun. 204(1-6), 67–74 (2002).
[Crossref]

X. Chen, Q. Li, Y. Lei, Y. Wang, and D. Yu, “Approximate wavenumber domain algorithm for interferometric synthetic aperture microscopy,” Opt. Commun. 283(9), 1993–1996 (2010).
[Crossref]

Opt. Express (24)

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
[Crossref] [PubMed]

G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express 19(19), 18135–18148 (2011).
[Crossref] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J.-H. Park, W.-Y. Oh, W. Jang, S. Lee, and Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[Crossref] [PubMed]

H. Yu, J. Jang, J. Lim, J.-H. Park, W. Jang, J.-Y. Kim, and Y. Park, “Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping,” Opt. Express 22(7), 7514–7523 (2014).
[Crossref] [PubMed]

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[Crossref] [PubMed]

J. Mo, M. de Groot, and J. F. de Boer, “Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth,” Opt. Express 23(4), 4935–4945 (2015).
[Crossref] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[Crossref] [PubMed]

A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

A. D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[Crossref] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express 21(24), 29955–29967 (2013).
[Crossref] [PubMed]

Z. Hu and A. Rollins, “Quasi-telecentric optical design of a microscope-compatible OCT scanner,” Opt. Express 13(17), 6407–6415 (2005).
[Crossref] [PubMed]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20(19), 21247–21263 (2012).
[Crossref] [PubMed]

Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
[Crossref] [PubMed]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
[Crossref] [PubMed]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part I): Stability requirements,” Opt. Express 22(16), 19183–19197 (2014).
[Crossref] [PubMed]

N. D. Shemonski, A. Ahmad, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Stability in computed optical interferometric tomography (Part II): in vivo stability assessment,” Opt. Express 22(16), 19314–19326 (2014).
[Crossref] [PubMed]

Opt. Lett. (14)

L. Yu and Z. Chen, “Digital holographic tomography based on spectral interferometry,” Opt. Lett. 32(20), 3005–3007 (2007).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy - holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[Crossref] [PubMed]

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

P. Pande, Y.-Z. Liu, F. A. South, and S. A. Boppart, “Automated computational aberration correction method for broadband interferometric imaging techniques,” Opt. Lett. 41(14), 3324–3327 (2016).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[Crossref] [PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Inverse scattering for high-resolution interferometric microscopy,” Opt. Lett. 31(24), 3585–3587 (2006).
[Crossref] [PubMed]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett. 35(10), 1683–1685 (2010).
[Crossref] [PubMed]

M. S. Heimbeck, D. L. Marks, D. Brady, and H. O. Everitt, “Terahertz interferometric synthetic aperture tomography for confocal imaging systems,” Opt. Lett. 37(8), 1316–1318 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[Crossref] [PubMed]

Proc. IEEE (2)

E. N. Leith, “Quasi-holographic techniques in the microwave region,” Proc. IEEE 59(9), 1305–1318 (1971).
[Crossref]

L. J. Cutrona, E. N. Leith, L. J. Porcello, and E. W. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar,” Proc. IEEE 54(8), 1026–1032 (1966).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (5)

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98(7), 3790–3795 (2001).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, and S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012).
[Crossref] [PubMed]

Proc. SPIE (11)

L. R. St. Marie, F. A. An, A. L. Corso, J. T. Grasel, and R. C. Haskell, “Robust, real-time, digital focusing for FD-OCM using ISAM on a GPU,” Proc. SPIE 8934, 89342W (2014).
[Crossref]

A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, D. A. Terpelov, and V. M. Gelikonov, “Interferometric synthetic aperture microscopy with automated parameter evaluation and phase equalization preprocessing,” Proc. SPIE 8934, 893413 (2014).

A. Boroomand, M. J. Shafiee, A. Wong, and K. Bizheva, “Lateral resolution enhancement via imbricated spectral domain optical coherence tomography in a maximum-a-posterior reconstruction framework,” Proc. SPIE 9312, 931240 (2015).
[Crossref]

H. Tang, J. A. Mulligan, G. R. Untracht, X. Zhang, and S. G. Adie, “GPU-based computational adaptive optics for volumetric optical coherence microscopy,” Proc. SPIE 9720, 97200O (2016).
[Crossref]

D. J. Fechtig, L. Ginner, A. Kumar, M. Pircher, T. Schmoll, L. M. Wurster, W. Drexler, and R. A. Leitgeb, “Retinal photoreceptor imaging with high-speed line-field parallel spectral domain OCT,” Proc. SPIE 9697, 969704 (2016).
[Crossref]

T. Anderson, A. Segref, G. Frisken, H. Ferra, D. Lorenser, and S. Frisken, “3D-spectral domain computational imaging,” Proc. SPIE 9697, 96970Z (2016).
[Crossref]

N. D. Shemonski, S. G. Adie, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics,” Proc. SPIE 9307, 930710 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, L. Ginner, W. Drexler, and R. A. Leitgeb, “High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT,” Proc. SPIE 9312, 931203 (2015).
[Crossref]

S. W. Lasswell, “History of SAR at Lockheed Martin (previously Goodyear Aerospace),” Proc. SPIE 5788, 1–12 (2005).
[Crossref]

A. Ahmad, M. Ali, F. South, G. L. Monroy, S. G. Adie, N. Shemonski, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer,” Proc. SPIE 8571, 857134 (2013).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, B. Darbarsyah, S. A. Boppart, and P. S. Carney, “The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy,” Proc. SPIE 7889, 78891O (2011).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Sci. Rep. (2)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

M. Cua, D. J. Wahl, Y. Zhao, S. Lee, S. Bonora, R. J. Zawadzki, Y. Jian, and M. V. Sarunic, “Coherence-gated sensorless adaptive optics multiphoton retinal imaging,” Sci. Rep. 6, 32223 (2016).
[Crossref] [PubMed]

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sensors (Basel) (1)

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy,” Sensors (Basel) 8(6), 3903–3931 (2008).
[Crossref] [PubMed]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 18005 (2010).

Ultrasound Med. Biol. (1)

T. R. Nelson and D. H. Pretorius, “Three-dimensional ultrasound imaging,” Ultrasound Med. Biol. 24(9), 1243–1270 (1998).
[Crossref] [PubMed]

Vision Res. (1)

D. T. Miller, D. R. Williams, G. M. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[Crossref] [PubMed]

Z. Med. Phys. (1)

A. F. Fercher, “Optical coherence tomography - development, principles, applications,” Z. Med. Phys. 20(4), 251–276 (2010).
[Crossref] [PubMed]

Other (8)

A. F. Fercher, “Inverse scattering and aperture synthesis in OCT,” in Optical Coherence Tomography Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2015), pp. 143–164.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, San Francisco, 1996).

E. Bousi and C. Pitris, “Lateral resolution improvement in Optical Coherence Tomography (OCT) images,” in Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (IEEE, 2012), pp. 598–601.
[Crossref]

D. Hillmann, H. Spahr, G. L. Franke, C. Hain, H. M. Sudkamp, and G. Hüttmann, “Numerical aberration correction in optical coherence tomography and holoscopy by optimization of image quality,” Presented at SPIE Photonics West, San Francisco, CA, February. (2015).

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” in 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE, 2006), pp. 578–581.
[Crossref]

“Diagnostic Photonics, Inc,” http://diagnosticphotonics.com .

A. Wax and V. Backman, eds., “Interferometric Synthetic Aperture Microscopy,” in Biomedical Applications of Light Scattering (McGraw-Hill Professional, 2010).

U. Schnars and W. Jueptner, Digital Holography (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of a point-scanning spectral-domain OCT system. (a) A fiber-based Michelson interferometer is used to measure the spectral interference from the sample arm and reference arm with a spectrometer. In the sample arm, light is focused into the sample and scanned by the scanners. (b) A scatterer is probed by a Gaussian beam traveling at different angles. Figure adapted from [16].

Fig. 2
Fig. 2

Geometry of a Gaussian beam for low- and high-numerical-aperture (NA) lenses. These geometries are contrasted with the assumption of a collimated axial OCT scan. The confocal parameter, b, is the region within which the beam is approximately collimated, and ��0 is the beam radius at the focus, which is related to the transverse resolution (2��0). The axial resolution depends on the coherence length of the source, ����. Figure adapted from [20].

Fig. 3
Fig. 3

Simulation of two scattering particles which are in-focus and far-from-focus, respectively. (a) Cross-section image of the standard OCT reconstruction showing strong defocus for the far-from-focus particle. (b) ISAM reconstruction showing depth-invariant high transverse resolution. (c) Phase of the original complex data in the frequency-domain. Black line illustrates ISAM resampling curve. (d) Resampled phase in the frequency-domain, corresponding to the ISAM reconstruction. Adapted from [73].

Fig. 4
Fig. 4

Human breast tissue imaged with Fourier-domain OCT according to the geometry illustrated in the top. En face images are shown at two different depths above the focal plane, 591 µm (section A) and 643 µm (section B). ISAM reconstructions (c,f) resolve structures in the tissue which are not decipherable from the standard OCT processing (b,e), and exhibit comparable features with respect to the histological section (a,b). The scale bar indicates 100 µm. Figure adapted from [16].

Fig. 5
Fig. 5

Real-time ISAM visualization of highly-scattering in vivo human skin from the wrist region acquired using a 0.1 NA OCT system, after placing the focus 1.2 mm beneath the skin surface. Cross-sectional results of (a) OCT and (b) ISAM. En face planes of (c) OCT and (d) ISAM at an optical depth of 520 µm into the tissue. (e) Variation of SNR with depth shows the improvement of ISAM, which was computed using the 20% (noise) and 90% (signal) quantiles of the intensity histograms. Compared to OCT, ISAM shows significant improvement over an extended depth range. CS, coverslip; GL, glycerol; SD, stratum disjunction; SC, stratum corneum; RD, reticular dermis; SF, subcutaneous fat. Scale bars represent 500 µm. Adapted from [59].

Fig. 6
Fig. 6

Digital refocusing of OCT data from an onion. (a) En face plane from outside the focal region. (b) Digital refocusing result for (a). (c) A typical en face image within the focal region. Figure adapted with permission from [96].

Fig. 7
Fig. 7

Holoscopic reconstruction of a grape comparing digital refocusing to the one-step reconstruction. (a) Cross-section from the volume refocued in one layer. (b) En face image at the virtual focus after the digital refocusing. (c) En face plane after the same digital recofusing operation as (b), 160 μm above the virtual focus. Since each depth is not independently brought into focus, defocus blur is still visible away from each virtual focus. (d) B-scan of the one-step reconstruction. (e) En face image at same location as (b). (f) En face image at same location as (f). Defocus is corrected since the one-step reconstruction brings every plane into focus. The NA was 0.14 (confocal parameter was 28 μm). Figure adapted with permission from [102].

Fig. 8
Fig. 8

Sub-aperture cross-correlation method for estimation of the aberration correction filter. Reconstructions from each sub-pupil function are compared to the central reference sub-aperture to determine the slope of the wavefront. Reproduced with permission from [123].

Fig. 9
Fig. 9

Volumetric cellular-resolution imaging of in vivo human skin acquired using a 0.6 NA point-scanning SD-OCM system without depth scanning. (a-e) En face results at different depths based-on the standard OCT processing. (f-j) ISAM and CAO processing for (a-e), respectively. Arrows indicate (f) boundary of the stratum corneum and epidermis, (g) granular cell nuclei, (h) dermal papillae, (i) basal cells, and (j) connective tissue. Scale bar represents 40 µm. Adapted from [119].

Fig. 10
Fig. 10

Fovea images of the living human retina. (a) A fundus image showing the location of the acquired en face OCT data. (b) Original en face OCT data. (c) En face OCT data after CAO. N, nasal; S, superior. Scale bars represent 2 degrees in (a) and 0.5 degrees in (b, c). Figure adapted from [124].

Fig. 11
Fig. 11

Retinal imaging and response to an optical stimulus. After computational aberration correction, optical path length changes Δℓ can be resolved in individual cones. (A and B) Measurements of independent responses were about 10 min apart. Light stimulus was 3 s for both cases. Most cones reacted to the stimulus, but some exhibited only a small or no response and are indicated by yellow arrows. Some locations pointed by the light blue arrow show abrupt phase changes within a single cone. (C). The proposed technique shows the capability of identifying more complicated stimulation patterns and indicating which photoreceptors contribute to an image seen by the test person. Scale bars represents 200 μm. Figure adapted from [135].

Fig. 12
Fig. 12

Simulation of a single point scatterer showing the impact of 1-D Brownian motion (left column), step motion (middle column), and sinusoidal motion (right column). The motion maps in the top row were applied along the axial dimension (second row), fast axis (third row), and slow axis (final row). Within each column, the left image shows the OCT en face plane, while the right image shows the result of computational refocusing. The magnitude of the motion applied is scaled by ���� for each image to achieve a representative artifact. The simulation was performed at a central wavelength of λ0 = 1.33 µm. Scale bars represent 50 µm. Reproduced from [138].

Fig. 13
Fig. 13

(a) Illustration of the axial motion correction algorithm implemented without an external phase reference. (b) Three-dimensional OCT and computationally-refocused reconstruction of an in vivo human sweat duct. Prior to phase correction, the computational refocusing fails dramatically. Following phase correction, the refocusing succeeds. Adapted from [145].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I(x,y;k)= | E S ( x,y;k ) | 2 + | E R ( k ) | 2 +2Re[ E S ( x,y;k ) E R * ( k ) ] = | E S ( x,y;k ) | 2 + | E R ( k ) | 2 +2Re[ S( x,y;k ) ]
F T kz { E S ( x,y;k ) E R * ( k ) e i ϕ Δ ( k ) }=F T kz { E S ( x,y;k ) E R * ( k ) } z F T kz { e i ϕ Δ ( k ) }
i n =n+ β 2 ( n/N ω ctr ) 2 + β 3 ( n/N ω ctr ) 3 ,
S(x,y;k)= h(x x ,y y ,z z ;k)η( x , y , z )d x d y d z .
S ˜ ( Q x , Q y ;k)= h ˜ ( Q x , Q y , z ;k) η ˜ ( Q x , Q y , z ) d z ,
S ˜ ( Q x , Q y ;k )=H( Q x , Q y ;k) η ˜ ( Q x , Q y , z ) exp[ i2 k z ( Q x /2, Q y /2) z ]d z , =H( Q x , Q y ;k ) η ˜ ˜ ( Q x , Q y , Q z ),
Q z =2 k z ( Q x /2 , Q y /2 )=2 k 2 ( Q x /2 ) 2 ( Q y /2 ) 2
η ˜ ˜ + ( Q x , Q y , Q z )= S ˜ ( Q x , Q y ;k ) | k= 1 2 Q x 2 + Q y 2 + Q z 2 .
η + ( x,y,z )= F 1 { η ˜ ˜ + ( Q x , Q y , Q z ) }.
S( Q x , Q y , z p )= dz η ˜ ( Q x , Q y ,z) H( Q x , Q y ;k) exp[ i2z k 2 ( Q x /2 ) 2 ( Q y /2 ) 2 ]exp( i2k z p )dk
k z k c ( Q x 2 + Q y 2 ) / 8 k c +Δk.
S( Q x , Q y , z p ) H( Q x , Q y ; z p ) η( Q x , Q y ,z ) exp[ i2(z z p ) k c iz( Q x 2 + Q y 2 ) / 4 k c ]δ( 2z2 z p )dz H( Q x , Q y ; z p ){ η( Q x , Q y , z p ) exp[ i z p ( Q x 2 + Q y 2 ) / 4 k c ] Defocus term }
S ˜ A ( Q x , Q y ;k )= exp[ i ϕ V ( Q x , Q y ;k ) ] Aberration term H A ( Q x , Q y ;k) H( Q x , Q y ;k ) η ˜ ˜ V ( Q x , Q y , Q z ),
S ˜ corr ( Q x , Q y ;k )= H A * ( Q x , Q y ;k ) S ˜ A ( Q x , Q y ;k ).
S ˜ corr ( Q x , Q y ;z= z 0 )= H A, z 0 * ( Q x , Q y ) S ˜ A ( Q x , Q y ;z= z 0 ).

Metrics