Abstract

Diffuse reflectance spectroscopy (DRS) is being used in exploratory clinical applications such as cancer margin assessment on excised tissue. However, when interrogating nonplanar tissue anomalies can arise from non-uniform pressure. Herein is reported the design, fabrication, and test of flexible, thin film silicon photodetectors (PDs) bonded to a flexible substrate designed for use in conformal DRS. The PDs have dark currents and responsivities comparable to conventional Si PDs, and were characterized while flat and while flexed at multiple radii of curvature using liquid phantoms mimicking adipose and malignant breast tissue. The DRS and nearest neighbor crosstalk results were compared with Monte Carlo simulations, showing good agreement between simulation and experiment.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays

Sulochana Dhar, Justin Y. Lo, Gregory M. Palmer, Martin A. Brooke, Brandon S. Nichols, Bing Yu, Nirmala Ramanujam, and Nan M. Jokerst
Biomed. Opt. Express 3(12) 3211-3222 (2012)

High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates

Sulochana Dhar, David M. Miller, and Nan M. Jokerst
Opt. Express 22(5) 5052-5059 (2014)

A low-cost, portable, and quantitative spectral imaging system for application to biological tissues

Henry L. Fu, Bing Yu, Justin Y Lo, Greg M. Palmer, Thomas F. Kuech, and Nimmi Ramanujam
Opt. Express 18(12) 12630-12645 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
    [Crossref] [PubMed]
  2. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  3. B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
    [Crossref]
  4. R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [Crossref] [PubMed]
  5. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
    [Crossref] [PubMed]
  6. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
    [Crossref] [PubMed]
  7. J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
    [Crossref] [PubMed]
  8. C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
    [Crossref] [PubMed]
  9. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062 (2006).
    [Crossref] [PubMed]
  10. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
    [Crossref] [PubMed]
  11. G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
    [Crossref]
  12. A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
    [Crossref] [PubMed]
  13. N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
    [Crossref] [PubMed]
  14. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt. 47(6), 825 (2008).
    [Crossref] [PubMed]
  15. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628 (1999).
    [Crossref]
  16. H.-W. Wang, J.-K. Jiang, C.-H. Lin, J.-K. Lin, G.-J. Huang, and J.-S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express 17(4), 2805 (2009).
    [Crossref] [PubMed]
  17. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
    [Crossref] [PubMed]
  18. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
    [Crossref] [PubMed]
  19. N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
    [Crossref] [PubMed]
  20. S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
    [Crossref]
  21. B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).
  22. O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
    [Crossref]
  23. R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
    [Crossref] [PubMed]
  24. H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
    [Crossref]
  25. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
    [Crossref] [PubMed]
  26. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
    [Crossref] [PubMed]
  27. N. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett. 45(10), 1102–1104 (1984).
    [Crossref]
  28. R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
    [Crossref]
  29. S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052 (2014).
    [Crossref] [PubMed]
  30. J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
    [Crossref] [PubMed]
  31. H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
    [Crossref]
  32. S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
    [Crossref] [PubMed]
  33. O. Shchekin and D. San, “Evolutionary new chip design targets lighting systems,” Comp. Semicond. 13(2), 14–16 (2007) [Online]. Available: www.lumileds.com/uploads/52/NA0307_01-pdf
  34. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
    [Crossref] [PubMed]
  35. C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” Tech. Rep. Res. Rep. 2002–11, Institut für Angewandte Physik, Bern, Switzerland (2002).
  36. S. Dhar, “Development of Custom Imaging Arrays for Biomedical Spectral Imaging Systems,” Ph.D. dissertation, Dept. Elec. Comp. Eng., Duke Univ., Durham, NC, 2012.

2016 (1)

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

2014 (1)

2013 (1)

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

2012 (4)

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
[Crossref]

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

2011 (1)

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

2010 (2)

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
[Crossref] [PubMed]

2009 (3)

H.-W. Wang, J.-K. Jiang, C.-H. Lin, J.-K. Lin, G.-J. Huang, and J.-S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express 17(4), 2805 (2009).
[Crossref] [PubMed]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

2008 (5)

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt. 47(6), 825 (2008).
[Crossref] [PubMed]

2007 (1)

O. Shchekin and D. San, “Evolutionary new chip design targets lighting systems,” Comp. Semicond. 13(2), 14–16 (2007) [Online]. Available: www.lumileds.com/uploads/52/NA0307_01-pdf

2006 (4)

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062 (2006).
[Crossref] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
[Crossref] [PubMed]

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

2003 (1)

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

2002 (1)

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

2001 (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

1999 (2)

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628 (1999).
[Crossref]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

1998 (1)

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

1997 (1)

1985 (1)

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

1984 (1)

N. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett. 45(10), 1102–1104 (1984).
[Crossref]

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

Ahn, B. Y.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Ames, F. C.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Babiera, G. V.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Baca, A. J.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Backman, V.

Barman, I.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Barry, W.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Bechtel, K. L.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Bender, J.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Bhattacharya, P.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Bigio, I. J.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Boyd, J.

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Breslin, T. M.

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
[Crossref] [PubMed]

Brooke, M.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

Brooke, M. A.

Brown, J.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Brown, J. Q.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
[Crossref] [PubMed]

Bydlon, T.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Bydlon, T. M.

Bykowski, J.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Casperson, L. W.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Celler, G. K.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Chagpar, A.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Chang, V.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Chiang, A.

N. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett. 45(10), 1102–1104 (1984).
[Crossref]

Cho-Vega, J. H.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Contini, D.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

Dasari, R. R.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Daye, D.

Dhar, S.

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052 (2014).
[Crossref] [PubMed]

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

S. Dhar, “Development of Custom Imaging Arrays for Biomedical Spectral Imaging Systems,” Ph.D. dissertation, Dept. Elec. Comp. Eng., Duke Univ., Durham, NC, 2012.

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

Dingari, N. C.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

Duoss, E. B.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Duvic, M.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Elvikis, P.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Feld, M. S.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628 (1999).
[Crossref]

Ferreira, P. M.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Fitzmaurice, M.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628 (1999).
[Crossref]

Gallagher, J.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Gao, W.

Garcia-Uribe, A.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Geddes, J. B.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Geradts, J.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
[Crossref] [PubMed]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Gilchrist, K. W.

Gillenwater, A. M.

Graham, R. A.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Greening, G.

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

Greenup, R.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Gregory, K. W.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Haka, A. S.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Harter, J.

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

Hennessy, R.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Homer, M. J.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Huang, G.-J.

Huang, Y.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Hunt, K. K.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Jackson, H. E.

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Jacques, S. L.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Janning, J. L.

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Jiang, J.-K.

Johnson, N.

N. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett. 45(10), 1102–1104 (1984).
[Crossref]

Jokerst, N.

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

Jokerst, N. M.

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052 (2014).
[Crossref] [PubMed]

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Junker, M.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Junker, M. K.

Kang, J. W.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Katz, J.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Kennedy, S.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Kennedy, S. A.

Kim, R. H.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Kim, T.-H.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Kollias, N.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Kuerer, H. M.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Lagally, M. G.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

Lewis, J. A.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Li, L.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Lim, S. L.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Lin, C.-H.

Lin, J.-K.

Llopis, A.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Lo, J.

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

Lo, J. Y.

Lue, N.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Ma, Z.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Madhavan, J.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Mallia, J. R.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Manoharan, R.

Markey, M. K.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

Martelli, F.

Mathews, A.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Mätzler, C.

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” Tech. Rep. Res. Rep. 2002–11, Institut für Angewandte Physik, Bern, Switzerland (2002).

McCachren, S. S.

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Meric-Bernstam, F.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Miller, D. M.

S. Dhar, D. M. Miller, and N. M. Jokerst, “High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates,” Opt. Express 22(5), 5052 (2014).
[Crossref] [PubMed]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Moore, L.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Motala, M. J.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Muldoon, T. J.

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

Nazemi, J.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Nichols, B. S.

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
[Crossref]

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Nuzzo, R. G.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Palmer, G.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Palmer, G. M.

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062 (2006).
[Crossref] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
[Crossref] [PubMed]

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Park, S.-I.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Perelman, L. T.

Prahl, S. A.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Prieto, V. G.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Qin, G.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Rajaram, N.

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
[Crossref]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramanujam, N.

S. Dhar, J. Y. Lo, G. M. Palmer, M. A. Brooke, B. S. Nichols, B. Yu, N. Ramanujam, and N. M. Jokerst, “A diffuse reflectance spectral imaging system for tumor margin assessment using custom annular photodiode arrays,” Biomed. Opt. Express 3(12), 3211 (2012).
[Crossref] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058 (2010).
[Crossref] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062 (2006).
[Crossref] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
[Crossref] [PubMed]

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Richards, L. M.

Richards-Kortum, R.

Rockett, A.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Rogers, J. A.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Ross, M. I.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Rothschild, J.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Safaii, H.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Sahin, A.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

San, D.

O. Shchekin and D. San, “Evolutionary new chip design targets lighting systems,” Comp. Semicond. 13(2), 14–16 (2007) [Online]. Available: www.lumileds.com/uploads/52/NA0307_01-pdf

Schwarz, R. A.

Sebastian, P.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Senlik, O.

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Shangguan, H.

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Shchekin, O.

O. Shchekin and D. San, “Evolutionary new chip design targets lighting systems,” Comp. Semicond. 13(2), 14–16 (2007) [Online]. Available: www.lumileds.com/uploads/52/NA0307_01-pdf

Shenk, R.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Shin, J.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

Singletary, S. E.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

Subhash, N.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Sun, L.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Supran, S.

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Thomas, S. S.

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Timlin, H.

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Tunnell, J. W.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
[Crossref]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Van Dam, J.

Vishwanath, K.

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

Volynskaya, Z.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Wang, H.-W.

Wang, L. V.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Wang, N.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

Wang, S.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Whitman, G. J.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Wilke, L.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Wilke, L. G.

Williams, M. D.

Wu, R.

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Xiao, J.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Xu, F.

Yen, T.

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Yu, B.

Yu, C.-C.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Yu, J.-S.

Yuan, H.-C.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

Zaccanti, G.

Zhu, C.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072 (2006).
[Crossref] [PubMed]

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

Zonios, G.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628 (1999).
[Crossref]

Zou, J.

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Am. J. Surg. (2)

A. Chagpar, T. Yen, A. Sahin, K. K. Hunt, G. J. Whitman, F. C. Ames, M. I. Ross, F. Meric-Bernstam, G. V. Babiera, S. E. Singletary, and H. M. Kuerer, “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” Am. J. Surg. 186(4), 371–377 (2003).
[Crossref] [PubMed]

R. A. Graham, M. J. Homer, J. Katz, J. Rothschild, H. Safaii, and S. Supran, “The pancake phenomenon contributes to the inaccuracy of margin assessment in patients with breast cancer,” Am. J. Surg. 184(2), 89–93 (2002).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 13102 (2009).
[Crossref]

N. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett. 45(10), 1102–1104 (1984).
[Crossref]

R. Wu, J. Boyd, H. Timlin, H. E. Jackson, and J. L. Janning, “Optical waveguide detection: photodetector array formed on the waveguide utilizing laser recrystallized silicon,” Appl. Phys. Lett. 46(5), 498–500 (1985).
[Crossref]

Biomed. Opt. Express (1)

Breast Cancer Res. (1)

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[Crossref] [PubMed]

Cancer Res. (1)

A. Garcia-Uribe, J. Zou, M. Duvic, J. H. Cho-Vega, V. G. Prieto, and L. V. Wang, “In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry,” Cancer Res. 72(11), 2738–2745 (2012).
[Crossref] [PubMed]

Comp. Semicond. (1)

O. Shchekin and D. San, “Evolutionary new chip design targets lighting systems,” Comp. Semicond. 13(2), 14–16 (2007) [Online]. Available: www.lumileds.com/uploads/52/NA0307_01-pdf

IEEE Trans. Biomed. Eng. (1)

J. Bender, K. Vishwanath, L. Moore, J. Brown, V. Chang, G. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

B. S. Nichols, N. Rajaram, and J. W. Tunnell, “Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy,” J. Biomed. Opt. 17(5), 0570011 (2012).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref] [PubMed]

N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11(1), 014018 (2006).
[Crossref] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13(2), 024012 (2008).
[Crossref] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[Crossref]

Lasers Surg. Med. (1)

C. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique,” Lasers Surg. Med. 38(7), 714–724 (2006).
[Crossref] [PubMed]

Nature Materials (1)

J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T.-H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Materials 7(11), 907–915 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967 (1999).
[Crossref] [PubMed]

PLOS ONE (1)

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLOS ONE 7(1), e30887 (2012).
[Crossref] [PubMed]

Proc. SPIE (2)

O. Senlik, G. Greening, T. J. Muldoon, and N. M. Jokerst, “Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media using a densely packed multi-pixel photodiode probe,” Proc. SPIE 9700, 97000O (2016).
[Crossref]

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. W. Gregory, “Pressure effects on soft tissues monitored by changes in tissue optical properties,” Proc. SPIE 3254, 366–371, (1998).
[Crossref]

Other (4)

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” Tech. Rep. Res. Rep. 2002–11, Institut für Angewandte Physik, Bern, Switzerland (2002).

S. Dhar, “Development of Custom Imaging Arrays for Biomedical Spectral Imaging Systems,” Ph.D. dissertation, Dept. Elec. Comp. Eng., Duke Univ., Durham, NC, 2012.

S. Dhar, J. Lo, B. Yu, M. Brooke, N. Ramanujam, and N. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), (IEEE, 2011), pp. 440–443.
[Crossref]

B. S. Nichols, A. Llopis, G. M. Palmer, S. S. McCachren, O. Senlik, D. M. Miller, M. Brooke, N. M. Jokerst, J. Geradts, R. Greenup, and N. Ramanujam, “Miniature spectral imaging device for wide-field quantitative functional imaging of the morphological landscape of breast tumor margins,” J. Biomed. Opt. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Illustration of thin film flexible PDs bonded to a flexible substrate. The DRS probe contains two flexible thin film Si PDs with center-to-center separation of 4.5 mm.
Fig. 2
Fig. 2 Image of the flexible PD probe bent cylindrically outward, bending radius of 15 mm.
Fig. 3
Fig. 3 (a) Surface normal responsivity of PD1 at multiple bend radii; (b) Dark current characterization of PD1 at multiple bend radii.
Fig. 4
Fig. 4 Absorption (μa, dotted lines) and scattering (μs, solid lines) coefficients of the liquid phantoms representing adipose (red lines) and malignant (blue lines) breast tissue.
Fig. 5
Fig. 5 Left: Illustration of liquid phantom testing at 10 mm radius of curvature: (a) Top clamp, with hollow region to contain liquid phantom and curved bottom edges; (b) Transparent PET film; (c) Flexible PDs on Kapton; (d) Bottom clamp, with curvature matching the top clamp. Right: Photograph of 10 mm bending radius test apparatus.
Fig. 6
Fig. 6 DRS reflectance versus wavelength for both benign and malignant phantoms at fourteen wavelengths and three radii of curvature.
Fig. 7
Fig. 7 Crosstalk reflectance for the benign phantom. All five radii of curvature were measured.
Fig. 8
Fig. 8 Experimental DRS signal (malignant phantom: red open circles, benign phantom: black open triangles) compared to Monte Carlo simulations (malignant phantom: red filled circles, benign phantom: black filled triangles) versus wavelength for the (a) flat test case and (b) 10 mm radius of curvature test case.
Fig. 9
Fig. 9 Experimental crosstalk reflectance (open triangles) compared to Monte Carlo simulations (filled triangles) for the benign phantom at five radii of curvature.
Fig. 10
Fig. 10 Signal contrast between benign and malignant phantom reflectance at flat and flexed conditions.
Fig. 11
Fig. 11 DRS signal (open circles) of (a) benign phantom; and (b) malignant phantom, compared to Monte Carlo simulations (filled circles) versus curvature (inverse of radius) at five wavelengths. Linear regression (dashed lines) shown for simulated data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( λ , ρ , P ) = i phantom ( λ , ρ , P ) i backillum ( λ , ρ ) I 0 ( λ , ρ ) [ i standard ( λ ) I 0 , standard ( λ ) ]
S ( λ ) = M ( λ ) B ( λ ) B ( λ )

Metrics