Abstract

Full-field swept-source optical coherence tomography (FF-SS-OCT) was recently shown to allow new and exciting applications for imaging the human eye that were previously not possible using current scanning OCT systems. However, especially when using cameras that do not acquire data with hundreds of kHz frame rate, uncorrected phase errors due to axial motion of the eye lead to a drastic loss in image quality of the reconstructed volumes. Here we first give a short overview of recent advances in techniques and applications of parallelized OCT and finally present an iterative and statistical algorithm that estimates and corrects motion-induced phase errors in the FF-SS-OCT data. The presented algorithm is in many aspects adopted from the phase gradient autofocus (PGA) method, which is frequently used in synthetic aperture radar (SAR). Following this approach, the available phase errors can be estimated based on the image information that remains in the data, and no parametrization with few degrees of freedom is required. Consequently, the algorithm is capable of compensating even strong motion artifacts. Efficacy of the algorithm was tested on simulated data with motion containing varying frequency components. We show that even in strongly blurred data, the actual image information remains intact, and the algorithm can identify the phase error and correct it. Furthermore, we use the algorithm to compensate real phase error in FF-SS-OCT imaging of the human retina. Acquisition rates can be reduced by a factor of three (from 60 to 20 kHz frame rate) with an image quality that is even higher compared to uncorrected volumes recorded at the maximum acquisition rate. The presented algorithm for axial motion correction decreases the high requirements on the camera frame rate and thus brings FF-SS-OCT closer to clinical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT

Dierck Hillmann, Tim Bonin, Christian Lührs, Gesa Franke, Martin Hagen-Eggert, Peter Koch, and Gereon Hüttmann
Opt. Express 20(6) 6761-6776 (2012)

Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

Chen D. Lu, Martin F. Kraus, Benjamin Potsaid, Jonathan J. Liu, WooJhon Choi, Vijaysekhar Jayaraman, Alex E. Cable, Joachim Hornegger, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 5(1) 293-311 (2014)

Off-axis reference beam for full-field swept-source OCT and holoscopy

Dierck Hillmann, Hendrik Spahr, Helge Sudkamp, Carola Hain, Laura Hinkel, Gesa Franke, and Gereon Hüttmann
Opt. Express 25(22) 27770-27784 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Speckle processing method for synthetic-aperture-radar phase correction,” Opt. Lett. 14, 1–3 (1989).
    [Crossref] [PubMed]
  2. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
    [Crossref] [PubMed]
  3. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy–holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
    [Crossref] [PubMed]
  4. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
    [Crossref] [PubMed]
  5. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
    [Crossref] [PubMed]
  6. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6, 1124–1134 (2015).
    [Crossref] [PubMed]
  7. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
    [Crossref] [PubMed]
  8. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
    [Crossref] [PubMed]
  9. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
    [Crossref] [PubMed]
  10. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
    [Crossref] [PubMed]
  11. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
    [Crossref] [PubMed]
  12. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14, 7661–7669 (2006).
    [Crossref]
  13. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24, 1250–1265 (2007).
    [Crossref]
  14. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [Crossref]
  15. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
    [Crossref]
  16. D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
    [Crossref]
  17. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
    [Crossref]
  18. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
    [Crossref]
  19. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [Crossref] [PubMed]
  20. D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
    [Crossref]
  21. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
    [Crossref] [PubMed]
  22. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
    [Crossref]
  23. K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
    [Crossref] [PubMed]
  24. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
    [Crossref] [PubMed]
  25. D. Hillmann, Holoscopy (Springer Fachmedien Wiesbaden, 2014).
  26. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [Crossref] [PubMed]
  27. P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.
  28. D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
    [Crossref]
  29. C. V. Jakowatz and D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture-radar imagery,” J. Opt. Soc. Am. A 10, 2539–2546 (1993).
    [Crossref]
  30. D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

2016 (2)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

2015 (4)

2013 (3)

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref] [PubMed]

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

2012 (2)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
[Crossref]

2007 (4)

2006 (1)

2005 (2)

2004 (1)

2002 (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

1994 (1)

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

1993 (1)

1989 (1)

1962 (1)

Adie, S. G.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

Ahmad, A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

Arthaber, H.

Baumann, M.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Blatter, C.

Bonin, T.

Boppart, S. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
[Crossref]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Carney, P. S.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Carney, P. Scott

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
[Crossref]

Delori, F. C.

Drexler, W.

Duker, J. S.

Eberhardt, K.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Eichel, P. H.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Speckle processing method for synthetic-aperture-radar phase correction,” Opt. Lett. 14, 1–3 (1989).
[Crossref] [PubMed]

P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.

Fechtig, D. J.

Fercher, A. F.

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Fujimoto, J. G.

Geliknov, G.

D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
[Crossref]

Gelikonov, V.

D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
[Crossref]

Ghiglia, D. C.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Speckle processing method for synthetic-aperture-radar phase correction,” Opt. Lett. 14, 1–3 (1989).
[Crossref] [PubMed]

P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

Grajciar, B.

Hagen-Eggert, M.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Halle, M.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Hanssen, H.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Heemann, U.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Hermann, B.

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy–holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

D. Hillmann, Holoscopy (Springer Fachmedien Wiesbaden, 2014).

Hinkel, L.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Huber, R.

Huttmann, G.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy–holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Itoh, M.

Jakowatz, C. V.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

C. V. Jakowatz and D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture-radar imagery,” J. Opt. Soc. Am. A 10, 2539–2546 (1993).
[Crossref]

P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Speckle processing method for synthetic-aperture-radar phase correction,” Opt. Lett. 14, 1–3 (1989).
[Crossref] [PubMed]

P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

Kamali, T.

Kampik, A.

Kim, M. K.

Klein, T.

Ko, T. H.

Koch, P.

Kotliar, K.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Kowalczyk, A.

Kumar, A.

Leitgeb, R. A.

Leith, E. N.

Liu, Y.-Z.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

Lührs, C.

Makita, S.

Marks, D. L.

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
[Crossref]

Nakamura, Y.

Neubauer, A.

Pfäffle, C.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Pircher, M.

Platzer, R.

Považay, B.

Ralston, T. S.

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
[Crossref]

Reznicek, L.

Sattmann, H.

Schmaderer, C.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Schmoll, T.

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

Shabanov, D.

D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
[Crossref]

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

Sliney, D. H.

South, F. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

Spahr, H.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Srinivasan, V. J.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Unterhuber, A.

Upatnieks, J.

Vilser, W.

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Wahl, D. E.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

C. V. Jakowatz and D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture-radar imagery,” J. Opt. Soc. Am. A 10, 2539–2546 (1993).
[Crossref]

P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.

Webb, R. H.

Werkmeister, R. M.

Wieser, W.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

Wojtkowski, M.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yu, L.

Biomed. Opt. Express (3)

IEEE Trans. Aerosp. Electron. Syst. (1)

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus - a robust tool for high-resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst. 30, 827–835 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Laser Physics Letters (1)

D. Shabanov, G. Geliknov, and V. Gelikonov, “Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization,” Laser Physics Letters 6, 753–758 (2009).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

Microcirculation (1)

K. Kotliar, H. Hanssen, K. Eberhardt, W. Vilser, C. Schmaderer, M. Halle, U. Heemann, and M. Baumann, “Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects,” Microcirculation 20, 405–415 (2013).
[Crossref] [PubMed]

Nature Photon. (1)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, P. Scott Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nature Photon. 9, 440–443 (2015).
[Crossref]

Nature Phys. (1)

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. USA (2)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Huttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. USA 113, 13138–13143 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Sci. Rep. (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

Other (3)

D. Hillmann, Holoscopy (Springer Fachmedien Wiesbaden, 2014).

P. H. Eichel, D. C. Ghiglia, C. V. Jakowatz, and D. E. Wahl, “Phase gradient autofocus for SAR phase correction: Explanation and demonstration of algorithmic steps,” in “Digital Signal Processing workshop, 1992,” (1992), pp. 661–662.

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Hüttmann, “Off-axis full-field swept-source OCT and holoscopy,” (in preperation) (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the algorithm used for motion correction. The first two iterations (i = 1,2) are used for compensating global motion. Further iterations (i = 3,4,5) are used to compensate rotational motions. After the fifth iteration the algorithm was finished.
Fig. 2
Fig. 2 a) The setup for FF-SS-OCT imaging of the retina. The tunable laser light is split into sample illumination (green) and reference illumination (blue). The backscattered light (dashed red line) of the sample is superimposed with the reference illumination on the camera sensor. b) B-Scan from a single volume with no remaining artifacts due to global motion. The volume is recorded in 8 ms corresponding to a frame rate of 60 kHz, and afterwards corrected using the modified PGA algorithm until no further phase error can be detected. This image serves as reference when simulating motion artifacts.
Fig. 3
Fig. 3 B-Scans of the investigated volume with the simulated motion (a–c) and after the correction (d–f). (g–i) Corresponding laterally averaged datasets before and after correction. The simulated motion corresponding to a PSF with FWHM of (a, d, g) 2078 px, (b, e, h) 130 px, and (c, f, i) 16 px.
Fig. 4
Fig. 4 (a) The remaining averaged phase error after correction with the PGA algorithm for different strong motion blur, broadening the axial PSF from initially 0.5 px to 2078 px FWHM; axial size of the image is 433 px. (b) Resulting SNR for the uncorrected (blue) and corrected images (green)
Fig. 5
Fig. 5 B-Scans from volumes of human retina without motion correction (a–c) and after motion correction (d–f). (g–i) Corresponding laterally averaged datasets before and after correction. OCT volumes are recorded at 60 kHz frame rate (a,d, g), 20 kHz frame rate (b, e, h), and 3 kHz frame rate (c, f, i) and averaged 50 times to improve the image quality.
Fig. 6
Fig. 6 SNR at different frame rates for the uncorrected volumes (blue) and motion corrected volumes (green).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) cos [ 2 k ( t ) z ( t ) ] = cos [ 2 ( m k ( z 0 + k i Δ k Δ z ) t + m k v t 2 + k i z 0 ) ] ,
x l , n = A l , n e i Φ l , n e i Φ error , n + u l , n ,
Φ error , n = arg l = 1 N x l , n
= arg l = 1 N ( A l , n e i Φ l , n e i Φ error , n + u l , n ) ,
C ^ = 1 N l = 1 N x l x l H ,

Metrics