Abstract

We measured hemoglobin oxygen saturation (sO2) in the retinal circulation in healthy humans using visible-light optical coherence tomography (vis-OCT). The measurements showed clear oxygenation differences between central retinal arteries and veins close to the optic nerve head. Spatial variations at different vascular branching levels were also revealed. In addition, we presented theoretical and experimental results to establish that noises in OCT intensity followed Rice distribution. We used this knowledge to retrieve unbiased estimation of true OCT intensity to improve the accuracy of vis-OCT oximetry, which had inherently lower signal-to-nose ratio from human eyes due to safety and comfort limitations. We demonstrated that the new statistical-fitting sampling strategy could reduce the estimation error in sO2 by three percentage points (pp). The presented work aims to provide a foundation for using vis-OCT to achieve accurate retinal oximetry in clinical settings.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography

Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and Hao F. Zhang
Biomed. Opt. Express 7(9) 3377-3389 (2016)

Measuring blood oxygen saturation along a capillary vessel in human

Kfir Akons, Eldad J. Dann, and Dvir Yelin
Biomed. Opt. Express 8(11) 5342-5348 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D.-Y. Yu and S. J. Cringle, “Retinal degeneration and local oxygen metabolism,” Exp. Eye Res. 80(6), 745–751 (2005).
    [Crossref] [PubMed]
  2. R. Simó, C. Hernández, and European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” Br. J. Ophthalmol. 96(10), 1285–1290 (2012).
    [Crossref] [PubMed]
  3. T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
    [Crossref] [PubMed]
  4. S. H. Hardarson and E. Stefánsson, “Retinal oxygen saturation is altered in diabetic retinopathy,” Br. J. Ophthalmol. 96(4), 560–563 (2012).
    [Crossref] [PubMed]
  5. C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
    [Crossref] [PubMed]
  6. C. Jørgensen and T. Bek, “Increasing oxygen saturation in larger retinal vessels after photocoagulation for diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 55(8), 5365–5369 (2014).
    [Crossref] [PubMed]
  7. M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
    [Crossref] [PubMed]
  8. J. C. Lau and R. A. Linsenmeier, “Increased intraretinal PO2 in short-term diabetic rats,” Diabetes 63(12), 4338–4342 (2014).
    [Crossref] [PubMed]
  9. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
    [Crossref] [PubMed]
  10. W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
    [Crossref] [PubMed]
  11. L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
    [Crossref]
  12. E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
    [PubMed]
  13. N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
    [Crossref] [PubMed]
  14. R. A. Linsenmeier and R. D. Braun, “Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia,” J. Gen. Physiol. 99(2), 177–197 (1992).
    [Crossref] [PubMed]
  15. O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
    [Crossref] [PubMed]
  16. R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
    [Crossref] [PubMed]
  17. B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
    [Crossref] [PubMed]
  18. Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
    [Crossref] [PubMed]
  19. J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
    [Crossref] [PubMed]
  20. D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
    [Crossref] [PubMed]
  21. H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
    [Crossref]
  22. W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
    [Crossref] [PubMed]
  23. X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
    [Crossref] [PubMed]
  24. W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
    [Crossref] [PubMed]
  25. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  26. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref] [PubMed]
  27. J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
    [Crossref] [PubMed]
  28. S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
    [Crossref] [PubMed]
  29. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref] [PubMed]
  30. M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
    [Crossref] [PubMed]
  31. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  32. B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
    [Crossref] [PubMed]
  33. J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
    [Crossref] [PubMed]
  34. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  35. S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
    [Crossref] [PubMed]
  36. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  37. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  38. W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.
  39. D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
    [Crossref] [PubMed]
  40. A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
    [Crossref] [PubMed]
  41. C. D. Murray, “The physiological principle of minimum work II. oxygen exchange in capillaries,” Proc. Natl. Acad. Sci. U.S.A. 12(5), 299–304 (1926).
    [Crossref] [PubMed]
  42. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  43. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref] [PubMed]
  44. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
    [Crossref] [PubMed]
  45. D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
    [Crossref] [PubMed]
  46. S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
    [Crossref] [PubMed]
  47. M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
    [Crossref] [PubMed]
  48. K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
    [PubMed]

2016 (3)

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

2015 (6)

X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

2014 (8)

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
[Crossref] [PubMed]

C. Jørgensen and T. Bek, “Increasing oxygen saturation in larger retinal vessels after photocoagulation for diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 55(8), 5365–5369 (2014).
[Crossref] [PubMed]

J. C. Lau and R. A. Linsenmeier, “Increased intraretinal PO2 in short-term diabetic rats,” Diabetes 63(12), 4338–4342 (2014).
[Crossref] [PubMed]

2013 (5)

W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
[Crossref] [PubMed]

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

S. H. Hardarson and E. Stefánsson, “Retinal oxygen saturation is altered in diabetic retinopathy,” Br. J. Ophthalmol. 96(4), 560–563 (2012).
[Crossref] [PubMed]

R. Simó, C. Hernández, and European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” Br. J. Ophthalmol. 96(10), 1285–1290 (2012).
[Crossref] [PubMed]

2011 (3)

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
[Crossref] [PubMed]

2009 (1)

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

2008 (2)

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

2007 (2)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref] [PubMed]

2006 (1)

N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
[Crossref] [PubMed]

2005 (1)

D.-Y. Yu and S. J. Cringle, “Retinal degeneration and local oxygen metabolism,” Exp. Eye Res. 80(6), 745–751 (2005).
[Crossref] [PubMed]

2003 (3)

2002 (1)

K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
[PubMed]

2001 (2)

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[Crossref] [PubMed]

2000 (1)

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

1999 (2)

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1992 (1)

R. A. Linsenmeier and R. D. Braun, “Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia,” J. Gen. Physiol. 99(2), 177–197 (1992).
[Crossref] [PubMed]

1981 (1)

E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
[PubMed]

1926 (1)

C. D. Murray, “The physiological principle of minimum work II. oxygen exchange in capillaries,” Proc. Natl. Acad. Sci. U.S.A. 12(5), 299–304 (1926).
[Crossref] [PubMed]

Aalders, M. C. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Adhi, M.

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Aguilar, E.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Al-Abboud, I.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Aprelev, A.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Backman, V.

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Beebe, D.

N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
[Crossref] [PubMed]

Bek, T.

C. Jørgensen and T. Bek, “Increasing oxygen saturation in larger retinal vessels after photocoagulation for diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 55(8), 5365–5369 (2014).
[Crossref] [PubMed]

C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
[Crossref] [PubMed]

Berkowitz, B. A.

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[Crossref] [PubMed]

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Boltz, A.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Braun, R. D.

R. A. Linsenmeier and R. D. Braun, “Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia,” J. Gen. Physiol. 99(2), 177–197 (1992).
[Crossref] [PubMed]

Bravo, S.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Chen, S.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Chew, E.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Choma, M.

Chong, S. P.

Christoffersen, N.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Cringle, S. J.

D.-Y. Yu and S. J. Cringle, “Retinal degeneration and local oxygen metabolism,” Exp. Eye Res. 80(6), 745–751 (2005).
[Crossref] [PubMed]

Dawczynski, J.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Delori, F. C.

Dhalla, A.-H.

Dong, B.

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

Duker, J. S.

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Eliasdottir, T. S.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Ersbøll, B.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Fawzi, A.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Fawzi, A. A.

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

Fercher, A.

Finikova, O. S.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Flanagan, J. G.

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

Friedlander, M.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Friedlander, M. Sh.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Gantner, M. L.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Gao, F.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Garhöfer, G.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Garnacho, C.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Gorman, A.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Gross, J.

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Grunkin, M.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Halldorsson, G. H.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Hammer, M.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Hardarson, S. H.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
[Crossref] [PubMed]

S. H. Hardarson and E. Stefánsson, “Retinal oxygen saturation is altered in diabetic retinopathy,” Br. J. Ophthalmol. 96(4), 560–563 (2012).
[Crossref] [PubMed]

Harvey, A. R.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Hendargo, H. C.

Hernández, C.

R. Simó, C. Hernández, and European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” Br. J. Ophthalmol. 96(10), 1285–1290 (2012).
[Crossref] [PubMed]

Hitzenberger, C.

Hochstrasser, R. M.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Holekamp, N. M.

N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Hudson, C.

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

Ito, Y.

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[Crossref] [PubMed]

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Izatt, J.

Izatt, J. A.

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2(8), 2175–2188 (2011).
[Crossref] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Jentsch, S.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

Jiao, S.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
[Crossref] [PubMed]

Jørgensen, C.

C. Jørgensen and T. Bek, “Increasing oxygen saturation in larger retinal vessels after photocoagulation for diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 55(8), 5365–5369 (2014).
[Crossref] [PubMed]

Jørgensen, C. M.

C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
[Crossref] [PubMed]

Kaluzny, J. V.

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

Karlsson, R. A.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Kight, A. C.

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[Crossref] [PubMed]

Königsdörffer, E.

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Kraft, J.

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Kristjansdottir, J. V.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

Kühn, U.

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Kurihara, T.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Landers, M. B.

E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
[PubMed]

Larsen, M.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Lasta, M.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Latif, Z.

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Lau, J. C.

J. C. Lau and R. A. Linsenmeier, “Increased intraretinal PO2 in short-term diabetic rats,” Diabetes 63(12), 4338–4342 (2014).
[Crossref] [PubMed]

Leahy, C.

Lebedev, A. Y.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Leitgeb, R.

Li, H.

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

Liemt, F.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Linsenmeier, R. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

J. C. Lau and R. A. Linsenmeier, “Increased intraretinal PO2 in short-term diabetic rats,” Diabetes 63(12), 4338–4342 (2014).
[Crossref] [PubMed]

R. A. Linsenmeier and R. D. Braun, “Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia,” J. Gen. Physiol. 99(2), 177–197 (1992).
[Crossref] [PubMed]

Liu, T.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

Liu, W.

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Luk, T. W. H.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Madsen, K.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Mandecka, A.

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

McDonald, C.

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

McNabb, R. P.

McNaught, A. I.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Merkle, C. W.

Mordant, D. J.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Muro, S.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Murray, C. D.

C. D. Murray, “The physiological principle of minimum work II. oxygen exchange in capillaries,” Proc. Natl. Acad. Sci. U.S.A. 12(5), 299–304 (1926).
[Crossref] [PubMed]

Muyo, G.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Napora, K. J.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Palkovits, S.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Paris, L. P.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Patel, S. R.

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

Pedersen, L.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Polak, K.

K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
[PubMed]

Popa-Cherecheanu, A.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Purta, P.

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

Radhakrishnan, H.

Rahman, M. S. A.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Riemer, T.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Ritchie, P.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Riva, C. E.

K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
[PubMed]

Sallam, A.

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Sander, B.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Sarunic, M.

Schmetterer, L.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
[PubMed]

Schmidl, D.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schultz, A.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Schweitzer, D.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Shah, R.

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

Shahidi, A. M.

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

Sheibani, N.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Shepherd, N.

Shonat, R. D.

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[Crossref] [PubMed]

Shu, X.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

Shui, Y.-B.

N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
[Crossref] [PubMed]

Simó, R.

R. Simó, C. Hernández, and European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” Br. J. Ophthalmol. 96(10), 1285–1290 (2012).
[Crossref] [PubMed]

Siuzdak, G.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Skands, U.

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Sliney, D. H.

Soetikno, B. T.

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

Soliman, K. A. E.-N.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Soliman, W.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Song, W.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

Sorenson, C. M.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Srinivasan, V. J.

Stefansson, E.

E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
[PubMed]

Stefánsson, E.

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

S. H. Hardarson and E. Stefánsson, “Retinal oxygen saturation is altered in diabetic retinopathy,” Br. J. Ophthalmol. 96(4), 560–563 (2012).
[Crossref] [PubMed]

Strobel, J.

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Thamm, E.

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Tofts, P. S.

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Told, R.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Troxler, T.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Usui, Y.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Vilser, W.

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

Vinogradov, S. A.

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Vinten, M.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Wang, S.

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

Webb, R. H.

Wei, Q.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

Werkmeister, R. M.

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

Westenskow, P. D.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Wittgrove, C.

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Wolbarsht, M. L.

E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
[PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yang, C.

Yang, V. X. D.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Yehya, S.

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Yi, J.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Yu, D.-Y.

D.-Y. Yu and S. J. Cringle, “Retinal degeneration and local oxygen metabolism,” Exp. Eye Res. 80(6), 745–751 (2005).
[Crossref] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zhang, H. F.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
[Crossref] [PubMed]

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Zhang, K.

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Acta Ophthalmol. (2)

C. M. Jørgensen, S. H. Hardarson, and T. Bek, “The oxygen saturation in retinal vessels from diabetic patients depends on the severity and type of vision-threatening retinopathy,” Acta Ophthalmol. 92(1), 34–39 (2014).
[Crossref] [PubMed]

W. Soliman, M. Vinten, B. Sander, K. A. E.-N. Soliman, S. Yehya, M. S. A. Rahman, and M. Larsen, “Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema,” Acta Ophthalmol. 86(4), 365–371 (2008).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

N. M. Holekamp, Y.-B. Shui, and D. Beebe, “Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract,” Am. J. Ophthalmol. 141(6), 1027–1032 (2006).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (2)

R. Simó, C. Hernández, and European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” Br. J. Ophthalmol. 96(10), 1285–1290 (2012).
[Crossref] [PubMed]

S. H. Hardarson and E. Stefánsson, “Retinal oxygen saturation is altered in diabetic retinopathy,” Br. J. Ophthalmol. 96(4), 560–563 (2012).
[Crossref] [PubMed]

ChemPhysChem (1)

O. S. Finikova, A. Y. Lebedev, A. Aprelev, T. Troxler, F. Gao, C. Garnacho, S. Muro, R. M. Hochstrasser, and S. A. Vinogradov, “Oxygen microscopy by two-photon-excited phosphorescence,” ChemPhysChem 9(12), 1673–1679 (2008).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

M. Adhi and J. S. Duker, “Optical coherence tomography--current and future applications,” Curr. Opin. Ophthalmol. 24(3), 213–221 (2013).
[Crossref] [PubMed]

Diabetes (1)

J. C. Lau and R. A. Linsenmeier, “Increased intraretinal PO2 in short-term diabetic rats,” Diabetes 63(12), 4338–4342 (2014).
[Crossref] [PubMed]

eLife (1)

T. Kurihara, P. D. Westenskow, M. L. Gantner, Y. Usui, A. Schultz, S. Bravo, E. Aguilar, C. Wittgrove, M. Sh. Friedlander, L. P. Paris, E. Chew, G. Siuzdak, and M. Friedlander, “Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration,” eLife 5, e14319 (2016).
[Crossref] [PubMed]

Exp. Eye Res. (2)

D.-Y. Yu and S. J. Cringle, “Retinal degeneration and local oxygen metabolism,” Exp. Eye Res. 80(6), 745–751 (2005).
[Crossref] [PubMed]

A. M. Shahidi, S. R. Patel, J. G. Flanagan, and C. Hudson, “Regional variation in human retinal vessel oxygen saturation,” Exp. Eye Res. 113, 143–147 (2013).
[Crossref] [PubMed]

Eye (Lond.) (2)

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. R. Harvey, and A. I. McNaught, “Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging,” Eye (Lond.) 28(10), 1190–1200 (2014).
[Crossref] [PubMed]

D. J. Mordant, I. Al-Abboud, G. Muyo, A. Gorman, A. Sallam, P. Ritchie, A. R. Harvey, and A. I. McNaught, “Spectral imaging of the retina,” Eye (Lond.) 25(3), 309–320 (2011).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

M. Hammer, W. Vilser, T. Riemer, A. Mandecka, D. Schweitzer, U. Kühn, J. Dawczynski, F. Liemt, and J. Strobel, “Diabetic patients with retinopathy show increased retinal venous oxygen saturation,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1025–1030 (2009).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (2)

S. Chen, J. Yi, W. Liu, V. Backman, and H. F. Zhang, “Monte Carlo investigation of optical coherence tomography retinal oximetry,” IEEE Trans. Biomed. Eng. 62(9), 2308–2315 (2015).
[Crossref] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46(12), 1454–1465 (1999).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

S. Palkovits, M. Lasta, R. Told, D. Schmidl, A. Boltz, K. J. Napora, R. M. Werkmeister, A. Popa-Cherecheanu, G. Garhöfer, and L. Schmetterer, “Retinal oxygen metabolism during normoxia and hyperoxia in healthy subjects,” Invest. Ophthalmol. Vis. Sci. 55(8), 4707–4713 (2014).
[Crossref] [PubMed]

M. Hammer, W. Vilser, T. Riemer, F. Liemt, S. Jentsch, J. Dawczynski, and D. Schweitzer, “Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation,” Invest. Ophthalmol. Vis. Sci. 52(1), 274–277 (2011).
[Crossref] [PubMed]

K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002).
[PubMed]

J. V. Kristjansdottir, S. H. Hardarson, G. H. Halldorsson, R. A. Karlsson, T. S. Eliasdottir, and E. Stefánsson, “Retinal oximetry with a scanning laser ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 55(5), 3120–3126 (2014).
[Crossref] [PubMed]

C. Jørgensen and T. Bek, “Increasing oxygen saturation in larger retinal vessels after photocoagulation for diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 55(8), 5365–5369 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[Crossref] [PubMed]

W. Liu, S. Jiao, and H. F. Zhang, “Accuracy of retinal oximetry: a Monte Carlo investigation,” J. Biomed. Opt. 18(6), 066003 (2013).
[Crossref] [PubMed]

X. Shu, W. Liu, and H. F. Zhang, “Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy,” J. Biomed. Opt. 20(10), 106005 (2015).
[Crossref] [PubMed]

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. H. Luk, A. Mariampillai, and V. X. D. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

H. Li, W. Liu, B. Dong, J. V. Kaluzny, A. A. Fawzi, and H. F. Zhang, “Snapshot hyperspectral retinal imaging using compact spectral resolving detector array,” J. Biophotonics 2016, 00053 (2016).
[Crossref]

J. Gen. Physiol. (1)

R. A. Linsenmeier and R. D. Braun, “Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia,” J. Gen. Physiol. 99(2), 177–197 (1992).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light Sci. Appl. 4(9), e334 (2015).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, “Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept,” Magn. Reson. Med. 46(2), 412–416 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Pattern Recognit. Lett. (1)

L. Pedersen, M. Grunkin, B. Ersbøll, K. Madsen, M. Larsen, N. Christoffersen, and U. Skands, “Quantitative measurement of changes in retinal vessel diameter in ocular fundus images,” Pattern Recognit. Lett. 21(13–14), 1215–1223 (2000).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. D. Murray, “The physiological principle of minimum work II. oxygen exchange in capillaries,” Proc. Natl. Acad. Sci. U.S.A. 12(5), 299–304 (1926).
[Crossref] [PubMed]

Sci. Rep. (2)

B. T. Soetikno, J. Yi, R. Shah, W. Liu, P. Purta, H. F. Zhang, and A. A. Fawzi, “Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model,” Sci. Rep. 5, 16752 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4, 6525 (2014).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

E. Stefansson, M. B. Landers, and M. L. Wolbarsht, “Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy,” Trans. Am. Ophthalmol. Soc. 79, 307–334 (1981).
[PubMed]

Vision Res. (1)

Y. Ito and B. A. Berkowitz, “MR studies of retinal oxygenation,” Vision Res. 41(10-11), 1307–1311 (2001).
[Crossref] [PubMed]

Other (1)

W. Liu, S. Wang, J. Yi, K. Zhang, S. Chen, C. M. Sorenson, N. Sheibani, and H. F. Zhang, “Increased inner retinal oxygen metabolism precedes microvascular alterations in rodent model with Type 1 diabetes,” Invest. Ophthalmol. Vis. Sci.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Statistical characteristics of noise in OCT. (a) Simulated interferogram with added Gaussian noise from a single reflective surface (red solid line). The black solid line is the noise free interferogram. The shaded area depicts S.D. of the added noise, which corresponds to SNR = 30 dB for the reconstructed image; (b) The distribution of the corresponding non-DC peak values on the 2D complex plane after discrete Fourier transform reconstruction. The insert shows the spatial distribution of the complex values in the 2D plane, which were tested to follow bi-variate normal distribution. (c) The distribution of the modulus r. The solid line is generated using the data from (a) and (b). The dashed line showed a non-symmetrical case where SNR was much worse (10 dB).

Fig. 2
Fig. 2

(a) Flowchart showing the steps of retrieving true OCT intensity using statistical fitting approach. For OCT oximetry, the same ROI is used for all narrow-band images. (b) A typical human vis-OCT B-scan image showing three sampling regions: one from within a blood vessel (1) and two from the background at different depths (2) and (3). (c) The pdf of OCT intensity (gray line) from box (1) and its statistical fitting (red line). The gray and red arrows indicate the arithmetic mean and fitted OCT intensity, respectively. (d) and (e) The pdfs of pure OCT noise intensities from the background at their respective depths in gray lines (boxes 2 and 3). Red lines are the corresponding statistical fittings. The gray arrows indicate arithmetic means. The fitted OCT intensities were both approximately zero.

Fig. 3
Fig. 3

Comparison of OCT intensity sampling errors on the accuracy of sO2 estimation. (a) The relative S.D. of extracting OCT intensities using arithmetic mean (black line) and statistical-fitting approach (red line) under different SNRs; (b) Numerical simulation result on sO2 estimation error at different pre-set sO2 level and relative S.D. of sampled OCT intensity. (sO2: 100% = 1).

Fig. 4
Fig. 4

Vis-OCT imaging results with different rSNRs from four healthy volunteers (A to D). Column i: vis-OCT en face fundus images. Column ii: vis-OCT B-scan images from the corresponding locations highlighted by the dashed lines in column i. Column iii: OCT intensity spectrum taken from the identified central retinal arteries (A1, black curve) and their corresponding least-squares fitted results (red line). Column iv: OCT intensity spectrum taken from the identified central retinal veins (V1, black curve) and their corresponding least-squares fitted results (red line).

Fig. 5
Fig. 5

Variations of sO2 in major retinal artery and vein branches. The vessel branches are taken from ROI’s identified in the corresponding vis-OCT fundus images in Fig. 4. The arterial and venous sO2 difference is statistically significant (**: p < 0.01).

Fig. 6
Fig. 6

A labeled vis-OCT B-scan showing imaged retinal layers. ILM: inner limiting membrane; NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting membrane; IS: photoreceptor inner segment; OS: photoreceptor outer segment; RPE: retinal pigment epithelium; BM: bruch's membrane.

Tables (2)

Tables Icon

Table 1 Summary of the imaged volunteers.

Tables Icon

Table 2 Reduction on sO2 measurement error (Δσ) using statistical fitting (SF) against arithmetic mean (AM). sO2 values are mean ± S.D of 10 measurements.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d[ x i ]= 1 N n=1 N D[ k n ] e j k n x i ,
D[ k i ]= D s [ k i ]+ D n [ k i ],
d[ x i ]= 1 N n=1 N { D s [ k i ]+ D n [ k i ] } e j k n x i = 1 N n=1 N D s [ k n ] e j k n x i + 1 N n=1 N D n [ k n ] e j k n x i = d s [ x i ]+ d n [ x i ].
d 0 [ x i ]= d n [ x i ] = 1 N n=1 N D n [ k n ] e j k n x i = 1 N n=1 N D n [ k n ]cos( k n x i )j 1 N n=1 N D n [ k n ]sin( k n x i ) =RejIm.
| d 0 [ x i ] |= R e 2 +I m 2 .
E{ Re }=E{ 1 N n=1 N D n [ k n ]cos( k n x i ) } = 1 N n=1 N cos( k n x i )E{ D n [ k n ] }=0,
Var{ Re }=Var{ 1 N n=1 N D n [ k n ]cos( k n x i ) } Var{ Re }=Var{ 1 N n=1 N D n [ k n ]cos( k n x i ) } = 1 N 2 n=1 N cos 2 ( k n x i )Var{ D n [ k n ] } = 1 N 2 σ 2 n=1 N cos 2 ( k n x i ).
f( t )={ Nt C σ 2 e N t 2 2C σ 2 ,  t>0; 0,  otherwise.
d[ x i ]=a+jb+ RejIm=( a+Re )+j( bIm )
| d[ x i ] |= ( a+Re ) 2 + ( bIm ) 2 .
g( t )={ t ε 2 e ( t 2 + υ 2 2 ε 2 ) I 0 ( tν ε 2 ),  t>0; 0,otherwise.

Metrics