Abstract

Erosive tissue-loss in dental enamel is of significant clinical concern because the net loss of enamel is irreversible, however, initial erosion is reversible. Micro-hardness testing is a standard method for measuring initial erosion, but its invasive nature has led to the investigation of alternative measurement techniques. Optical coherence tomography (OCT) is an attractive alternative because of its ability to non-invasively image three-dimensional volumes. In this study, a four-dimensional OCT system is used to longitudinally measure bovine enamel undergoing a continuous erosive challenge. A new method of analyzing 3D OCT volumes is introduced that compares intensity projections of the specimen surface by calculating the slope of a linear regression line between corresponding pixel intensities and the associated correlation coefficient. The OCT correlation measurements are compared to micro-hardness data and found to exhibit a linear relationship. The results show that this method is a sensitive technique for the investigation of the formation of early stage erosive lesions.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography

Robert C. Lee, Hobin Kang, Cynthia L. Darling, and Daniel Fried
Biomed. Opt. Express 5(9) 2950-2962 (2014)

Assessing surface characteristics of eroded dentine with optical coherence tomography: a preliminary in vitro validation study

Madiha Habib, Kuan Ming Lee, Yih Miin Liew, Christian Zakian, Ngie Min Ung, and Hooi Pin Chew
Appl. Opt. 57(29) 8673-8679 (2018)

Miniature endoscopic optical coherence tomography for calculus detection

Meng-Chun Kao, Chun-Li Lin, Che-Yen Kung, Yi-Fung Huang, and Wen-Chuan Kuo
Appl. Opt. 54(24) 7419-7423 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Zipkin and F. J. McClure, “Inhibitory Effect of Fluoride on Tooth Decalcification by Citrate and Lactate in Vivo,” J. Dent. Res. 28(2), 151–159 (1949).
    [PubMed]
  2. J. Arends and J. M. Ten Cate, “Tooth enamel remineralization,” J. Cryst. Growth 53, 135–147 (1981).
  3. T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
    [PubMed]
  4. M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
    [PubMed]
  5. M. Addy and R. Shellis, Interaction between Attrition, Abrasion and Erosion in Tooth Wear (Karger Publishers, 2006), Vol. 20.
  6. Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
    [PubMed]
  7. A. T. Hara and D. T. Zero, “Analysis of the erosive potential of calcium-containing acidic beverages,” Eur. J. Oral Sci. 116(1), 60–65 (2008).
    [PubMed]
  8. M. E. Barbour and J. S. Rees, “The laboratory assessment of enamel erosion: a review,” J. Dent. 32(8), 591–602 (2004).
    [PubMed]
  9. N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
    [PubMed]
  10. L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).
  11. G. Maupomé and J. M. Ray, “Structured review of enamel erosion literature (1980-1998): a critical appraisal of experimental, clinical and review publications,” Oral Dis. 6(4), 197–207 (2000).
    [PubMed]
  12. V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
    [PubMed]
  13. B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
    [PubMed]
  14. B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37(16), 3582–3585 (1998).
    [PubMed]
  15. Y. Chen, L. Otis, D. Piao, and Q. Zhu, “Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system,” Appl. Opt. 44(11), 2041–2048 (2005).
    [PubMed]
  16. H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
    [PubMed]
  17. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
    [PubMed]
  18. X.-J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, and J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38(10), 2092–2096 (1999).
    [PubMed]
  19. Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
    [PubMed]
  20. H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
    [PubMed]
  21. C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
    [PubMed]
  22. K. H. Chan, A. C. Chan, C. L. Darling, and D. Fried, “Methods for Monitoring Erosion Using Optical Coherence Tomography,” Proc. SPIE–Int. Soc. Opt. Eng. 8566, 856606 (2013).
  23. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
    [PubMed]
  24. M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
    [PubMed]
  25. R. P. Shellis and M. Addy, The Interactions between Attrition, Abrasion and Erosion in Tooth Wear (Karger Publishers, 2014), Vol. 25.
  26. A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
    [PubMed]
  27. K. H. Chan, A. C. Chan, C. L. Darling, and D. Fried, “Methods for monitoring erosion using optical coherence tomography,” in (2013), Vol. 8566, pp. 856606–856606–6.
  28. T. Attin and F. J. Wegehaupt, Methods for Assessment of Dental Erosion (Karger Publishers, 2014), Vol. 25.
  29. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).
  30. A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
    [PubMed]
  31. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
    [PubMed]
  32. J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).
  33. I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
    [PubMed]
  34. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22, 65502 (2011).
  35. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” in (International Society for Optics and Photonics, 2008), p. 68472Q–68472Q–8.
  36. A. Fouad, T. J. Pfefer, C.-W. Chen, W. Gong, A. Agrawal, P. H. Tomlins, P. D. Woolliams, R. A. Drezek, and Y. Chen, “Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison,” Biomed. Opt. Express 5(7), 2066–2081 (2014).
    [PubMed]
  37. P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
    [PubMed]
  38. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [PubMed]
  39. G. C. Carrasco, “Quantification of paper mass distributions within local picking areas,” Nord. Pulp Paper Res. J. 22, 441–446 (2007).
  40. S. K. Ruikang and K. Wang, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

2015 (1)

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

2014 (4)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

A. Fouad, T. J. Pfefer, C.-W. Chen, W. Gong, A. Agrawal, P. H. Tomlins, P. D. Woolliams, R. A. Drezek, and Y. Chen, “Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison,” Biomed. Opt. Express 5(7), 2066–2081 (2014).
[PubMed]

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

2013 (3)

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

2012 (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[PubMed]

2011 (6)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22, 65502 (2011).

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[PubMed]

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[PubMed]

M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
[PubMed]

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

2009 (4)

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

2008 (1)

A. T. Hara and D. T. Zero, “Analysis of the erosive potential of calcium-containing acidic beverages,” Eur. J. Oral Sci. 116(1), 60–65 (2008).
[PubMed]

2007 (2)

G. C. Carrasco, “Quantification of paper mass distributions within local picking areas,” Nord. Pulp Paper Res. J. 22, 441–446 (2007).

S. K. Ruikang and K. Wang, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

2005 (1)

2004 (1)

M. E. Barbour and J. S. Rees, “The laboratory assessment of enamel erosion: a review,” J. Dent. 32(8), 591–602 (2004).
[PubMed]

2002 (1)

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

2001 (1)

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

2000 (4)

G. Maupomé and J. M. Ray, “Structured review of enamel erosion literature (1980-1998): a critical appraisal of experimental, clinical and review publications,” Oral Dis. 6(4), 197–207 (2000).
[PubMed]

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

1999 (1)

1998 (1)

1981 (1)

J. Arends and J. M. Ten Cate, “Tooth enamel remineralization,” J. Cryst. Growth 53, 135–147 (1981).

1949 (1)

I. Zipkin and F. J. McClure, “Inhibitory Effect of Fluoride on Tooth Decalcification by Citrate and Lactate in Vivo,” J. Dent. Res. 28(2), 151–159 (1949).
[PubMed]

Addy, M.

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

Agrawal, A.

Amaechi, B. T.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Arends, J.

J. Arends and J. M. Ten Cate, “Tooth enamel remineralization,” J. Cryst. Growth 53, 135–147 (1981).

Attin, T.

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

Barbour, M. E.

M. E. Barbour and J. S. Rees, “The laboratory assessment of enamel erosion: a review,” J. Dent. 32(8), 591–602 (2004).
[PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Breunig, T. M.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Buchalla, W.

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

Campillo-Funollet, M.

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

Carrasco, G. C.

G. C. Carrasco, “Quantification of paper mass distributions within local picking areas,” Nord. Pulp Paper Res. J. 22, 441–446 (2007).

Chen, C.-L.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

Chen, C.-W.

Chen, Y.

Cheng, Z.-J.

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

Cherukara, G.

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Chew, H. P.

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
[PubMed]

Colston, B. W.

Cooper, L.

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

Cui, F.-Z.

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

Da Silva, L. B.

de Boer, J. F.

Dichtl, S.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Drezek, R. A.

Eisenburger, M.

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[PubMed]

Ellwood, R. P.

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
[PubMed]

Elton, V.

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

Enfield, J.

Everett, M. J.

Featherstone, J. D. B.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Fercher, A. F.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Fouad, A.

Fried, D.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Ganss, C.

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

Ge, J.

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

Gollner, M.

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

Gong, W.

Hao, P.

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Hara, A.

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

Hara, A. T.

A. T. Hara and D. T. Zero, “Analysis of the erosive potential of calcium-containing acidic beverages,” Eur. J. Oral Sci. 116(1), 60–65 (2008).
[PubMed]

Hariri, I.

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

Hellwig, E.

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

Higham, S. M.

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Hitzenberger, C. K.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Hughes, J.

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

Huysmans, M. C. D. N. J. M.

M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
[PubMed]

Jackson, D. A.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Jandt, K. D.

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

Jonathan, E.

Kawakami-Wong, H.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

Le, C.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Leahy, M.

Lussi, A.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Maupomé, G.

G. Maupomé and J. M. Ray, “Structured review of enamel erosion literature (1980-1998): a critical appraisal of experimental, clinical and review publications,” Oral Dis. 6(4), 197–207 (2000).
[PubMed]

McClure, F. J.

I. Zipkin and F. J. McClure, “Inhibitory Effect of Fluoride on Tooth Decalcification by Citrate and Lactate in Vivo,” J. Dent. Res. 28(2), 151–159 (1949).
[PubMed]

Milner, T. E.

Moritz, A.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Nakagawa, H.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

Nakajima, M.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

Nakashima, S.

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

Nathel, H.

Nazari, A.

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

Nelson, J. S.

Nikaido, T.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

Osann, K.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Otis, L.

Otis, L. L.

Otsuki, M.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

Pashley, D. H.

Pender, N.

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

Pfefer, T. J.

Piao, D.

Podoleanu, A. G.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Pretty, I. A.

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

Rasakanthan, J.

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[PubMed]

Ray, J. M.

G. Maupomé and J. M. Ray, “Structured review of enamel erosion literature (1980-1998): a critical appraisal of experimental, clinical and review publications,” Oral Dis. 6(4), 197–207 (2000).
[PubMed]

Rees, J. S.

M. E. Barbour and J. S. Rees, “The laboratory assessment of enamel erosion: a review,” J. Dent. 32(8), 591–602 (2004).
[PubMed]

Robl, B.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Rogers, J. A.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Ruikang, S. K.

S. K. Ruikang and K. Wang, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

Sadr, A.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

Samarawickrama, D.

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Sampson, D. D.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

Sattmann, H.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Schlueter, N.

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[PubMed]

Seymour, K.

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Shafi, S.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Shellis, R. P.

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

Shimada, Y.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

Sperr, W.

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Stroeve, P.

Sugden, K.

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).

Sumi, Y.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

Tagami, J.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

Ten Cate, J. M.

J. Arends and J. M. Ten Cate, “Tooth enamel remineralization,” J. Cryst. Growth 53, 135–147 (1981).

Tomlins, P. H.

A. Fouad, T. J. Pfefer, C.-W. Chen, W. Gong, A. Agrawal, P. H. Tomlins, P. D. Woolliams, R. A. Drezek, and Y. Chen, “Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison,” Biomed. Opt. Express 5(7), 2066–2081 (2014).
[PubMed]

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22, 65502 (2011).

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[PubMed]

Voronets, J.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Wada, I.

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

Wang, K.

S. K. Ruikang and K. Wang, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

Wang, R. K.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

Wang, X.-J.

Wang, X.-M.

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

West, N. X.

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

Wilder-Smith, C. H.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Wilder-Smith, P.

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Woolliams, P. D.

A. Fouad, T. J. Pfefer, C.-W. Chen, W. Gong, A. Agrawal, P. H. Tomlins, P. D. Woolliams, R. A. Drezek, and Y. Chen, “Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison,” Biomed. Opt. Express 5(7), 2066–2081 (2014).
[PubMed]

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22, 65502 (2011).

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[PubMed]

Xie, J.

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

Yan, J.-X.

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

Zakian, C. M.

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

Zero, D. T.

A. T. Hara and D. T. Zero, “Analysis of the erosive potential of calcium-containing acidic beverages,” Eur. J. Oral Sci. 116(1), 60–65 (2008).
[PubMed]

Zhang, A.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

Zhang, Q.

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

Zhang, Y.

Zhu, Q.

Zipkin, I.

I. Zipkin and F. J. McClure, “Inhibitory Effect of Fluoride on Tooth Decalcification by Citrate and Lactate in Vivo,” J. Dent. Res. 28(2), 151–159 (1949).
[PubMed]

Zou, L.

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Am. J. Gastroenterol. (1)

C. H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, and A. Lussi, “Quantification of Dental Erosions in Patients With GERD Using Optical Coherence Tomography Before and After Double-Blind, Randomized Treatment With Esomeprazole or Placebo,” Am. J. Gastroenterol. 104(11), 2788–2795 (2009).
[PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. K. Ruikang and K. Wang, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

Biomed. Mater. (1)

Z.-J. Cheng, X.-M. Wang, F.-Z. Cui, J. Ge, and J.-X. Yan, “The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation,” Biomed. Mater. 4(1), 015020 (2009).
[PubMed]

Biomed. Opt. Express (2)

Caries Res. (7)

M. C. D. N. J. M. Huysmans, H. P. Chew, and R. P. Ellwood, “Clinical Studies of Dental Erosion and Erosive Wear,” Caries Res. 45(Suppl 1), 60–68 (2011).
[PubMed]

I. Hariri, A. Sadr, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Estimation of the Enamel and Dentin Mineral Content from the Refractive Index,” Caries Res. 47(1), 18–26 (2013).
[PubMed]

N. Schlueter, A. Hara, R. P. Shellis, and C. Ganss, “Methods for the Measurement and Characterization of Erosion in Enamel and Dentine,” Caries Res. 45(Suppl 1), 13–23 (2011).
[PubMed]

T. Attin, W. Buchalla, M. Gollner, and E. Hellwig, “Use of Variable Remineralization Periods to Improve the Abrasion Resistance of Previously Eroded Enamel,” Caries Res. 34(1), 48–52 (2000).
[PubMed]

M. Eisenburger, J. Hughes, N. X. West, K. D. Jandt, and M. Addy, “Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion,” Caries Res. 34(4), 289–294 (2000).
[PubMed]

H. P. Chew, C. M. Zakian, I. A. Pretty, and R. P. Ellwood, “Measuring Initial Enamel Erosion with Quantitative Light-Induced Fluorescence and Optical Coherence Tomography: An in Vitro Validation Study,” Caries Res. 48(3), 254–262 (2014).
[PubMed]

A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-Sensitive Optical Coherence Tomography of Dental Structures,” Caries Res. 34(1), 59–69 (2000).
[PubMed]

Eur. J. Oral Sci. (1)

A. T. Hara and D. T. Zero, “Analysis of the erosive potential of calcium-containing acidic beverages,” Eur. J. Oral Sci. 116(1), 60–65 (2008).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,” IEEE J. Sel. Top. Quantum Electron. 20, 272–288 (2014).

J. Biomed. Opt. (3)

A. Zhang, Q. Zhang, C.-L. Chen, and R. K. Wang, “Methods and algorithms for optical coherence tomography-based angiography: a review and comparison,” J. Biomed. Opt. 20(10), 100901 (2015).
[PubMed]

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16, 020505 (2011).

D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. 7(4), 618–627 (2002).
[PubMed]

J. Biophotonics (2)

Y. Shimada, H. Nakagawa, A. Sadr, I. Wada, M. Nakajima, T. Nikaido, M. Otsuki, J. Tagami, and Y. Sumi, “Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo,” J. Biophotonics 7(7), 506–513 (2014).
[PubMed]

A. Nazari, A. Sadr, M. Campillo-Funollet, S. Nakashima, Y. Shimada, J. Tagami, and Y. Sumi, “Effect of hydration on assessment of early enamel lesion using swept-source optical coherence tomography,” J. Biophotonics 6(2), 171–177 (2013).
[PubMed]

J. Cryst. Growth (1)

J. Arends and J. M. Ten Cate, “Tooth enamel remineralization,” J. Cryst. Growth 53, 135–147 (1981).

J. Dent. (3)

M. E. Barbour and J. S. Rees, “The laboratory assessment of enamel erosion: a review,” J. Dent. 32(8), 591–602 (2004).
[PubMed]

V. Elton, L. Cooper, S. M. Higham, and N. Pender, “Validation of enamel erosion in vitro,” J. Dent. 37(5), 336–341 (2009).
[PubMed]

H. Nakagawa, A. Sadr, Y. Shimada, J. Tagami, and Y. Sumi, “Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro,” J. Dent. 41(1), 80–89 (2013).
[PubMed]

J. Dent. Res. (1)

I. Zipkin and F. J. McClure, “Inhibitory Effect of Fluoride on Tooth Decalcification by Citrate and Lactate in Vivo,” J. Dent. Res. 28(2), 151–159 (1949).
[PubMed]

J. Oral Rehabil. (1)

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral Rehabil. 28(12), 1092–1093 (2001).
[PubMed]

Meas. Sci. Technol. (1)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22, 65502 (2011).

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[PubMed]

Nord. Pulp Paper Res. J. (1)

G. C. Carrasco, “Quantification of paper mass distributions within local picking areas,” Nord. Pulp Paper Res. J. 22, 441–446 (2007).

Oral Dis. (1)

G. Maupomé and J. M. Ray, “Structured review of enamel erosion literature (1980-1998): a critical appraisal of experimental, clinical and review publications,” Oral Dis. 6(4), 197–207 (2000).
[PubMed]

Phys. Med. Biol. (1)

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[PubMed]

Wear (1)

L. Zou, G. Cherukara, P. Hao, K. Seymour, and D. Samarawickrama, “Geometrics of tooth wear,” Wear 266, 605–608 (2009).

Other (6)

M. Addy and R. Shellis, Interaction between Attrition, Abrasion and Erosion in Tooth Wear (Karger Publishers, 2006), Vol. 20.

K. H. Chan, A. C. Chan, C. L. Darling, and D. Fried, “Methods for Monitoring Erosion Using Optical Coherence Tomography,” Proc. SPIE–Int. Soc. Opt. Eng. 8566, 856606 (2013).

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” in (International Society for Optics and Photonics, 2008), p. 68472Q–68472Q–8.

K. H. Chan, A. C. Chan, C. L. Darling, and D. Fried, “Methods for monitoring erosion using optical coherence tomography,” in (2013), Vol. 8566, pp. 856606–856606–6.

T. Attin and F. J. Wegehaupt, Methods for Assessment of Dental Erosion (Karger Publishers, 2014), Vol. 25.

R. P. Shellis and M. Addy, The Interactions between Attrition, Abrasion and Erosion in Tooth Wear (Karger Publishers, 2014), Vol. 25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Example of spatially registered projection images at acid challenge durations of a) t = 0 minutes and b) t = 5 minutes expanded to show individual pixels. c) The intensity of spatially corresponding pixels, plotted such that intensities from t = 0 are along the horizontal axis and intensities from t = 5 are on the vertical axis.
Fig. 2
Fig. 2 Bovine enamel disc measuring approximately 10 mm in diameter, embedded in a clear resin substrate having a diameter of 25 mm.
Fig. 3
Fig. 3 Specimen holder constructed from transparent PMMA and comprising 6 independent flow cell chambers. The total volume of each chamber was 2.3 mL.
Fig. 4
Fig. 4 Experimental setup used to capture OCT images during the development of early stage surface softening in bovine enamel. The OCT probe was mounted on a linear translation stage to enable imaging of multiple specimens. The specimens were mounted vertically in a flow-cell through which acidic solution was pumped.
Fig. 5
Fig. 5 Sub-sampling of an OCT surface projection image. a) The original projection image overlaid by a region of interest (ROI) comprising a grid of 10x10 pixel regions. b) Each 10x10 pixel region replaced by its corresponding mean pixel intensity.
Fig. 6
Fig. 6 OCT B-Scans (logarithmic intensity) taken from the center of each specimen at time-points, t = 0, 1, 2, 5, 10, 30 and 120 minutes. Rows a) to c) correspond to the first experiment, d) to g) the second and h) the third experiment. The images show the enamel surface, nail varnished region, enamel and enamel dentine junction (EDJ).
Fig. 7
Fig. 7 Correlation coefficient measured for an enamel specimen displaced axially in 10 µm increments over a total displacement of 500 µm.
Fig. 8
Fig. 8 Results for a single specimen from the first experiment at t = 0 (baseline) and subsequent time-points t = 1, 2, 5, 10, 30 and 120 minutes. Surface projection images are calculated from linearly intensity OCT volumes as described in the text. The difference images represent the projection image difference from baseline. The pixel intensity scatter-plots compare the mean intensity of corresponding 10x10 pixel regions in base-line and subsequent images. Correlation values are calculated from each scatter-plot.
Fig. 9
Fig. 9 Results for a single specimen from the second experiment at t = 0 (baseline) and subsequent time-points t = 1, 2, 5, 10, 30 and 120 minutes. Surface projection images are calculated from linearly intensity OCT volumes as described in the text. The difference images represent the projection image difference from baseline. The pixel intensity scatter-plots compare the mean intensity of corresponding 10x10 pixel regions in base-line and subsequent images. Correlation values are calculated from each scatter-plot.
Fig. 10
Fig. 10 Mean (a) correlation coefficient and (b) image intensity slope at 2 minute intervals measured over a continuous 120 minute erosive challenge. The mean is calculated over all 8 specimens. The error bars represent 95% confidence intervals.
Fig. 11
Fig. 11 Comparison of the correlation range for the reference phantom, nail varnish, bovine enamel immersed in de-ionised water and bovine enamel immersed in acidic solution. Measurements were obtained over a 120 minute continuous immersion period.
Fig. 12
Fig. 12 Comparison of correlation values obtained at one minute intervals during 5 minutes immersion of bovine enamel in de-ionised water and citric acid at pH 3.8.
Fig. 13
Fig. 13 Mean Vickers hardness measurements acquired from a batch of 8 bovine enamel discs each subjected to a total of 1 hour of acid challenge and measured after 0, 5, 10, 15, 30, 45 and 60 minutes.
Fig. 14
Fig. 14 Mean Vickers hardness measurements for 8 bovine enamel specimens following 0, 5, 10, 15, 30, 45 and 60 minutes of acid challenge plotted with the corresponding correlation values (a) and pixel region intensity slope values (b). Error bars represent 95% confidence intervals. A linear regression line is plotted in both.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P(x,y)= z 1 z 2 I(x,y,z)dz
r(t)= x y [ P 0 (x,y) P 0 ¯ ] [ P t (x,y) P t ¯ ] x y [ P 0 (x,y) P 0 ¯ ] 2 x y [ P t (x,y) P t ¯ ] 2
P t (i)=b P 0 (i)
b(t)= x y P 0 (x,y) P t (x,y) x y P 0 (x,y) 2
P(t,x,y)= z= z surface z max I(t,x,y,z)

Metrics