Abstract

Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

Experimental demonstration of a novel bio‑sensing platform via plasmonic band gap formation in gold nano‑patch arrays

Marco Grande, Maria Antonietta Vincenti, Tiziana Stomeo, Giuseppe Morea, Roberto Marani, Valeria Marrocco, Vincenzo Petruzzelli, Antonella D’Orazio, Roberto Cingolani, Massimo De Vittorio, Domenico de Ceglia, and Michael Scalora
Opt. Express 19(22) 21385-21395 (2011)

Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties

Anka Schwuchow, Marko Zobel, Andrea Csaki, Kerstin Schröder, Jens Kobelke, Wolfgang Fritzsche, and Kay Schuster
Opt. Mater. Express 2(8) 1050-1055 (2012)

References

  • View by:
  • |
  • |
  • |

  1. O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
    [Crossref] [PubMed]
  2. P. D’Orazio, “Biosensors in clinical chemistry - 2011 update,” Clin. Chim. Acta 412(19-20), 1749–1761 (2011).
    [Crossref] [PubMed]
  3. S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
    [Crossref] [PubMed]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  5. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  6. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
    [Crossref] [PubMed]
  7. J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
    [Crossref]
  8. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  9. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref] [PubMed]
  10. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  11. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
    [Crossref] [PubMed]
  12. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
    [Crossref] [PubMed]
  13. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
    [Crossref] [PubMed]
  14. A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
    [Crossref]
  15. J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
    [Crossref] [PubMed]
  16. A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
    [Crossref] [PubMed]
  17. S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
    [Crossref] [PubMed]
  18. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  19. T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).
  20. T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
    [Crossref]
  21. T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
    [Crossref]
  22. J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
    [Crossref]
  23. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  24. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
    [Crossref]
  25. S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
    [Crossref] [PubMed]
  26. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [Crossref] [PubMed]
  27. G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
    [Crossref] [PubMed]
  28. A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
    [Crossref] [PubMed]
  29. K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
    [Crossref]
  30. A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
    [Crossref]
  31. K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  32. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15(19), 11952–11958 (2007).
    [Crossref] [PubMed]
  33. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  34. X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
    [Crossref] [PubMed]
  35. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  36. J. Turkevich, P. C. Stevenson, and J. Hillier, “A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold,” Discuss Faraday Soc, 55 (1951).
  37. G. Frens, “Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions,” Nature-Phys Sci 241(105), 20–22 (1973).
    [Crossref]
  38. A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
    [Crossref]
  39. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
    [Crossref]
  40. A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
    [Crossref]
  41. Alexandre Dmitriev, ed., Nanoplasmonic Sensors (Springer, 2012).
  42. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
    [Crossref]
  43. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [Crossref]
  44. N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
    [Crossref]
  45. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [Crossref] [PubMed]
  46. A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

2016 (4)

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref] [PubMed]

2015 (4)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

2014 (3)

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
[Crossref]

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

2013 (4)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

2012 (6)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

P. D’Orazio, “Biosensors in clinical chemistry - 2011 update,” Clin. Chim. Acta 412(19-20), 1749–1761 (2011).
[Crossref] [PubMed]

2010 (3)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

2009 (2)

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

2008 (4)

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[Crossref] [PubMed]

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

2007 (6)

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[Crossref]

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
[Crossref]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15(19), 11952–11958 (2007).
[Crossref] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (2)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2002 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1973 (1)

G. Frens, “Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions,” Nature-Phys Sci 241(105), 20–22 (1973).
[Crossref]

Adibi, A.

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Aravanis, A. M.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Arregui, F. J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Bartelt, H.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Cao, J.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
[Crossref]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

Chamanzar, M.

Chemnitz, M.

S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref] [PubMed]

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

Chen, J. S. Y.

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Chen, N. K.

Cheng, G. L.

Chui, H. C.

Csaki, A.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

Csáki, A.

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Cubillas, A. M.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

D’Orazio, P.

P. D’Orazio, “Biosensors in clinical chemistry - 2011 update,” Clin. Chim. Acta 412(19-20), 1749–1761 (2011).
[Crossref] [PubMed]

Dathe, A.

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

Deisseroth, K.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Del Campo, F. J.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Dellith, J.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Doherty, B.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

Duan, X.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Eftekhari, F.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Escobedo, C.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Etzold, B. J. M.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Faez, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Fehri, M. F.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Ferreira, J.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Florous, N. J.

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
[Crossref]

Frens, G.

G. Frens, “Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions,” Nature-Phys Sci 241(105), 20–22 (1973).
[Crossref]

Fritzsche, W.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

Galbraith, E. K.

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

Garmann, R. F.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gauvreau, B.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Girotto, E. M.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Goerke, S.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Goicoechea, J.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Gong, Q.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Gordon, R.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Grattan, K. T. V.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
[Crossref]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

Haes, A. J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hassani, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[Crossref]

Hautakorpi, M.

Henkel, T.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Hogle, J. M.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Huang, C. H.

Hubner, U.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Jahn, F.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Jatschka, J.

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

Ji, J.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Jiang, X. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

Kabashin, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Kirsch, K.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Kobelke, J.

Koshiba, M.

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
[Crossref]

Kostecki, R.

Lahini, Y.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Larson, D. N.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Latka, I.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Lazcka, O.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Lee, S. Y.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref] [PubMed]

Li, B. B.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Li, Y.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Lin, H. Y.

Linzen, S.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Lu, Y.

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Ludvigsen, H.

Luo, J.

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Ma, W.

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Malsch, D.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Manoharan, V. N.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Mattinen, M.

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Meltzer, L. A.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Meschede, D.

Mogri, M. Z.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Moller, R.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

Monro, T. M.

Muñoz, F. X.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Orrit, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Rauschenbeutel, A.

Russell, P. S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

Russell, P. S. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Russell, P. St. J.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Saitoh, K.

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
[Crossref]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Schmidt, M.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Schmidt, M. A.

S. C. Warren-Smith, J. Wie, M. Chemnitz, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref] [PubMed]

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Schneider, M. B.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Schneider, T.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Schroder, K.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

Schröder, K.

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Schuster, K.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Schwuchow, A.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

A. Schwuchow, M. Zobel, A. Csáki, K. Schröder, J. Kobelke, W. Fritzsche, and K. Schuster, “Monolayers of different metal nanoparticles in microstructured optical fibers with multiplex plasmonic properties,” Opt. Mater. Express 2(8), 1050–1055 (2012).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Sinton, D.

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Skorobogatiy, M.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[Crossref]

Sokolowski, M.

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Spittel, R.

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Steinbrück, A.

A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

Stranik, O.

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

Strelau, K.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

Sun, T.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
[Crossref]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

Taccardi, N.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Thiele, M.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

Tong, L.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Tuniz, A.

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Unterkofler, S.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Urrutia, A.

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Vetsch, E.

Wang, L. P.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Wang, P.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Warken, F.

Warren-Smith, S. C.

Wasserscheid, P.

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Weber, K.

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

Weidlich, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Wie, J.

Wieduwilt, T.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Williams, G. O. S.

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

Willsch, R.

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Wondraczek, K.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Xia, Z.

Xiao, Y. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Yang, J. C.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Yao, J.

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yegnanarayanan, S.

Yonzon, C. R.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Yoo, S. M.

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref] [PubMed]

Yu, X. C.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Zeisberger, M.

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Zhang, F.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Zhang, X.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Zhuang, X.

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Zobel, M.

Zopf, D.

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

ACS Nano (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nano-fluidic optical fiber,” ACS Nano 9(12), 12349–12357 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single Nanoparticle Detection and Sizing Using a Nanofiber Pair in an Aqueous Environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

A. M. Cubillas, M. Schmidt, T. G. Euser, N. Taccardi, S. Unterkofler, P. St. J. Russell, P. Wasserscheid, and B. J. M. Etzold, “In Situ Heterogeneous Catalysis Monitoring in a Hollow-Core Photonic Crystal Fiber Microflow Reactor,” Adv. Mater. Interfaces 1(5), 1300093 (2014).
[Crossref]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid Optical Fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Anal. Chem. (1)

F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes As Nanochannels: Flow-through Plasmonic Sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

APL Photonics (1)

T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, W. Fritzsche, and M. A. Schmidt, “Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing,” APL Photonics 1(6), 066102 (2016).
[Crossref]

Biosens. Bioelectron. (1)

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Clin. Chim. Acta (1)

P. D’Orazio, “Biosensors in clinical chemistry - 2011 update,” Clin. Chim. Acta 412(19-20), 1749–1761 (2011).
[Crossref] [PubMed]

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28(3), 198–213 (2008).
[Crossref]

Eng. Life Sci. (1)

A. Csáki, M. Thiele, J. Jatschka, A. Dathe, D. Zopf, O. Stranik, and W. Fritzsche, “Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing,” Eng. Life Sci. 15(3), 266–275 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. J. Florous, K. Saitoh, and M. Koshiba, “Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,” IEEE Photonics Technol. Lett. 19(5), 324–326 (2007).
[Crossref]

IEEE Sens. J. (2)

K. Schroder, A. Csaki, A. Schwuchow, F. Jahn, K. Strelau, I. Latka, T. Henkel, D. Malsch, K. Schuster, K. Weber, T. Schneider, R. Moller, and W. Fritzsche, “Functionalization of Microstructured Optical Fibers by Internal Nanoparticle Mono-Layers for Plasmonic Biosensor Applications,” IEEE Sens. J. 12(1), 218–224 (2012).
[Crossref]

J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors With Different Coating Structures,” IEEE Sens. J. 12(7), 2355–2361 (2012).
[Crossref]

J. Appl. Phys. (2)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Neural Eng. (1)

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Sens. (1)

A. Urrutia, J. Goicoechea, and F. J. Arregui, “Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings,” J. Sens. 2015, 1–18 (2015).
[Crossref]

Lab Chip (1)

G. O. S. Williams, J. S. Y. Chen, T. G. Euser, P. S. Russell, and A. C. Jones, “Photonic crystal fibre as an optofluidic reactor for the measurement of photochemical kinetics with sub-picomole sensitivity,” Lab Chip 12(18), 3356–3361 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled Plasmonic-Photonic Hybrid Cavity for Tailored Light-Matter Coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond.) 1(2), 219–228 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Nature-Phys Sci (1)

G. Frens, “Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions,” Nature-Phys Sci 241(105), 20–22 (1973).
[Crossref]

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
[Crossref]

Plasmonics (1)

T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, and H. Bartelt, “Optical Fiber Micro-Taper with Circular Symmetric Gold Coating for Sensor Applications Based on Surface Plasmon Resonance,” Plasmonics 8(2), 545–554 (2013).
[Crossref]

Reviews in Plasmonics (1)

A. Steinbrück, A. Csaki, and W. Fritzsche, “Metal Nanoparticles for Molecular Plasmonics,” Reviews in Plasmonics 2010, 1–37 (2010).

Sci. Rep. (1)

T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hubner, and M. A. Schmidt, “Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes,” Sci. Rep. 5, 17060 (2015).

Sens. Actuators B Chem. (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: A review,” Sens. Actuators B Chem. 195, 332–351 (2014).
[Crossref]

Sensors (Basel) (1)

J. Luo, J. Yao, Y. Lu, W. Ma, and X. Zhuang, “A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection,” Sensors (Basel) 13(3), 3986–3997 (2013).
[Crossref] [PubMed]

Small (1)

A. Csáki, F. Jahn, I. Latka, T. Henkel, D. Malsch, T. Schneider, K. Schröder, K. Schuster, A. Schwuchow, R. Spittel, D. Zopf, and W. Fritzsche, “Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers,” Small 6(22), 2584–2589 (2010).
[Crossref] [PubMed]

Trends Biotechnol. (1)

S. M. Yoo and S. Y. Lee, “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends Biotechnol. 34(1), 7–25 (2016).
[Crossref] [PubMed]

Other (2)

Alexandre Dmitriev, ed., Nanoplasmonic Sensors (Springer, 2012).

J. Turkevich, P. C. Stevenson, and J. Hillier, “A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold,” Discuss Faraday Soc, 55 (1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the plasmonic nanoparticle-functionalised suspended-core fibre. (b) Scanning-electron micrograph (SEM) of the microstructured section of the investigated fibre. Grey areas correspond to silica glass, the black regions to air. The dashed cyan circle highlights the core section relevant for the interaction between light and localised surface plasmons.

Fig. 2
Fig. 2

Comparison of the spectral distributions of the effective modal scattering areas for the 2.8 µm diameter suspended-core fibre investigated here (green curve) and a circular silica taper embedded in water with a diameter of 3.62 µm (purple curve). The dashed and solid lines refer to air or water as analyte medium, respectively. It is assumed that the particle is located 1 nm above the glass surface as indicated by the red dots in the sketches.

Fig. 3
Fig. 3

(a) Density of the nanospheres inside the suspended-core fibre as a function of the concentration ratio of APTES and PROSI (pink points) used. The solid line is a parabolic fitting curve (parameters given in the text). The right-handed images ((b)-(g)) are SEM images of the various achieved densities inside one hole of the respective suspended-core fibre (b: 2 NPs/µm2; c: 8 NPs/µm2; d: 22 NPs/µm2; e: 30 NPs/µm2; f: 180 NPs/µm2; g: 500 NPs/µm2. The scale bars in (b) to (f) correspond to 200 nm and in (g) to 100 nm.

Fig. 4
Fig. 4

Schematic of the optofluidic setup used to measure the transmission through the nanoparticle-functionalised suspended-core fibre (SCG: supercontinuum generation; BS: beam splitter; OBJ: objective; OSA: optical spectrum analyzer). The blue arrows refer to the probe light used to determine the transmission characteristics. The red arrows correspond to the light used for imaging the spot of the beam on the input facet of the sample (dashed red lines: illumination light, solid red lines: reflected light). The lower two sketches show the two different measurement configurations used for the quantification of the modal attenuation (configuration A) and for the determination of the refractive index sensitivity (configuration B). The right-handed images show the output mode at selected wavelength for a sample with N = 22 NP/µm2 (top: 550 nm, middle: 575 nm, bottom: 650 nm) in the case of microchannels filled with air.

Fig. 5
Fig. 5

(a) Measured spectral distribution of the attenuation of the fundamental core mode in the nanoparticle-functionalised suspended-core fibre (microchannels filled with air). The various curves correspond to different nanoparticle densities (most dark green: 8 NPs/µm2; dark green: 22 NPs/µm2; green: 180 NPs/µm2; light green: 500 NPs/µm2). (b) Extinction spectrum of the used nanoparticle ensemble in the case where the nanoparticles are probed transverse to the fibre axis in water (bulk measurement, N = 180 NPs/µm2). (c) Modal attenuation at the most prominent attenuation peak of the individual attenuation curve in (a) as function of nanoparticle density.

Fig. 6
Fig. 6

Measured shift of the resonance wavelength as function of analyte refractive index for a fibre sample with a density of 22 NPs/µm2 and a length of 4 mm, yielding a sensitivity of 167 nm/RIU. The upper left-hand inset (purple) shows the corresponding plot of nanospheres in aqueous solution when the incident light is perpendicular to the fibre axis (transverse measurement configuration), giving rise to a sensitivity of 117nm/RIU. The lower right-hand inset (pink) shows an example transmission spectrum in the case of a water analyte (normalised to the highest transmission value, light red area indicates the region of the LSPR). Note that this curve includes the spectral characteristics of the various components of the measurement setup (e.g., light source).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ=Nσ A eff 1 dl
A eff ( r 0 )= A S z ( r )dA S z ( r 0 )