Abstract

The optical properties of amyloid fibers are often distinct from those of the source protein in its non-fibrillar form. These differences can be utilized for label-free imaging or characterization of such structures, which is particularly important for understanding amyloid fiber related diseases such as Alzheimer’s and Parkinson’s disease. We demonstrate that two amyloid forming proteins, insulin and β-lactoglobulin (β-LG), show intrinsic fluorescence with emission spectra that are dependent on the excitation wavelength. Additionally, a new fluorescence peak at about 430 nm emerges for β-LG in its amyloid state. The shift in emission wavelength is related to the red edge excitation shift (REES), whereas the additional fluorescence peak is likely associated with charge delocalization along the fiber backbone. Furthermore, the spherulitic amyloid plaque-like superstructures formed from the respective proteins were imaged label-free with confocal fluorescence, multiphoton excitation fluorescence (MPEF), and second-harmonic generation (SHG) microscopy. The latter two techniques in particular yield images with a high contrast between the amyloid fiber regions and the core of amorphously structured protein. Strong multiphoton absorption (MPA) for the amyloid fibers is a likely contributor to the observed contrast in the MPEF images. The crystalline fibrillar region provides even higher contrast in the SHG images, due to the inherently ordered non-centrosymmetric structure of the fibers together with their non-isotropic arrangement. Finally, we show that MPEF from the insulin spherulites exhibits a spectral dependence on the excitation wavelength. This behavior is consistent with the REES phenomenon, which we hypothesize is the origin of this observation. The presented results suggest that amyloid deposits can be identified and structurally characterized based on their intrinsic optical properties, which is important for probe-less and label-free identification and characterization of amyloid fibers in vitro and in complex biological samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free nonlinear optical imaging of mouse retina

Sicong He, Cong Ye, Qiqi Sun, Christopher K.S. Leung, and Jianan Y. Qu
Biomed. Opt. Express 6(3) 1055-1066 (2015)

Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure

Marco Lombardo, David Merino, Pablo Loza-Alvarez, and Giuseppe Lombardo
Biomed. Opt. Express 6(8) 2803-2818 (2015)

Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development

Qiqi Sun, Yanfeng Li, Sicong He, Chenghao Situ, Zhenguo Wu, and Jianan Y. Qu
Biomed. Opt. Express 5(1) 158-166 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333–366 (2006).
    [Crossref] [PubMed]
  2. D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).
  3. T. Shirahama and A. S. Cohen, “High-resolution electron microscopic analysis of the amyloid fibril,” J. CellBiol. 33(3), 679–708 (1967).
    [Crossref]
  4. O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
    [Crossref] [PubMed]
  5. J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
    [Crossref] [PubMed]
  6. M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
    [Crossref] [PubMed]
  7. C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
    [Crossref] [PubMed]
  8. L. C. Serpell, “Alzheimer’s amyloid fibrils: structure and assembly,” Biochim. Biophys. Acta 1502(1), 16–30 (2000).
    [Crossref] [PubMed]
  9. P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
    [Crossref] [PubMed]
  10. P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
    [Crossref] [PubMed]
  11. M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
    [Crossref] [PubMed]
  12. J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
    [Crossref] [PubMed]
  13. E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
    [Crossref]
  14. D. Hamada and C. M. Dobson, “A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea,” Protein Sci. 11(10), 2417–2426 (2002).
    [Crossref] [PubMed]
  15. S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
    [Crossref]
  16. H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
    [Crossref] [PubMed]
  17. A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
    [Crossref] [PubMed]
  18. T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
    [Crossref]
  19. A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
    [Crossref]
  20. J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
    [Crossref]
  21. M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
    [Crossref] [PubMed]
  22. L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
    [Crossref] [PubMed]
  23. S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
    [Crossref]
  24. F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
    [Crossref] [PubMed]
  25. D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
    [Crossref] [PubMed]
  26. M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
    [Crossref]
  27. B. Rosenberg, “Electrical conductivity of proteins,” Nature 193(4813), 364–365 (1962).
    [Crossref] [PubMed]
  28. M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
    [Crossref]
  29. M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
    [Crossref] [PubMed]
  30. A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
    [Crossref] [PubMed]
  31. Y. V. Novakovskaya, “Conjugation in hydrogen-bonded systems,” Struct. Chem. 23(4), 1253–1266 (2012).
    [Crossref]
  32. D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
    [Crossref] [PubMed]
  33. L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
    [Crossref] [PubMed]
  34. T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
    [Crossref] [PubMed]
  35. T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
    [Crossref] [PubMed]
  36. H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
    [Crossref] [PubMed]
  37. G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
    [Crossref]
  38. M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
    [Crossref] [PubMed]
  39. E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
    [PubMed]
  40. T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
    [Crossref] [PubMed]
  41. C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
    [PubMed]
  42. D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
    [Crossref]
  43. K. R. Domike and A. M. Donald, “Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin,” Biomacromolecules 8(12), 3930–3937 (2007).
    [Crossref] [PubMed]
  44. M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
    [Crossref] [PubMed]
  45. M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
    [Crossref]
  46. S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
    [Crossref]
  47. K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
    [Crossref]
  48. K. R. Domike and A. M. Donald, “Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin,” Int. J. Biol. Macromol. 44(4), 301–310 (2009).
    [Crossref] [PubMed]
  49. M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
    [Crossref]
  50. D. Cannon and A. M. Donald, “Control of liquid crystallinity of amyloid-forming systems,” Soft Matter 9(10), 2852–2857 (2013).
    [Crossref]
  51. F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
    [Crossref] [PubMed]
  52. B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
    [Crossref] [PubMed]
  53. R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
    [PubMed]
  54. B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
    [Crossref] [PubMed]
  55. C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
    [Crossref]
  56. N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
    [Crossref]
  57. D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
    [Crossref] [PubMed]
  58. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
    [Crossref] [PubMed]
  59. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimers pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
    [Crossref] [PubMed]
  60. J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
    [Crossref] [PubMed]
  61. P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
    [Crossref]
  62. J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
    [Crossref]
  63. W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
    [Crossref]
  64. E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
    [Crossref] [PubMed]
  65. S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
    [Crossref] [PubMed]
  66. A. P. Demchenko, “The red-edge effect: 30 years of exploration,” Luminescence 17(1), 19–42 (2002).
    [Crossref] [PubMed]
  67. A. Chattopadhyay and H. Sourav, “Dynamic insight into protein structure utilizing red edge excitation shift,” Acc. Chem. Res. 47(1), 12–19 (2014).
    [Crossref]
  68. J. R. Lakowicz and H. Sourav, “On spectral relaxation in proteins,” Photochem. Photobiol. 72(4), 421–437 (2000).
    [Crossref] [PubMed]
  69. J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85(1), 589–598 (2003).
    [Crossref] [PubMed]
  70. P. K. Johansson and P. Koelsch, “Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments,” J. Am. Chem. Soc. 136(39), 13598–13601 (2014).
    [Crossref] [PubMed]
  71. J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
    [Crossref]
  72. A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
    [Crossref]

2016 (3)

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
[Crossref]

F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
[Crossref] [PubMed]

2015 (4)

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

2014 (5)

P. K. Johansson and P. Koelsch, “Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments,” J. Am. Chem. Soc. 136(39), 13598–13601 (2014).
[Crossref] [PubMed]

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

A. Chattopadhyay and H. Sourav, “Dynamic insight into protein structure utilizing red edge excitation shift,” Acc. Chem. Res. 47(1), 12–19 (2014).
[Crossref]

2013 (8)

P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
[Crossref]

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

D. Cannon and A. M. Donald, “Control of liquid crystallinity of amyloid-forming systems,” Soft Matter 9(10), 2852–2857 (2013).
[Crossref]

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

2012 (4)

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Y. V. Novakovskaya, “Conjugation in hydrogen-bonded systems,” Struct. Chem. 23(4), 1253–1266 (2012).
[Crossref]

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

2011 (3)

M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
[Crossref] [PubMed]

E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
[PubMed]

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

2010 (3)

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

2009 (3)

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

K. R. Domike and A. M. Donald, “Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin,” Int. J. Biol. Macromol. 44(4), 301–310 (2009).
[Crossref] [PubMed]

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimers pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[Crossref] [PubMed]

2008 (3)

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

2007 (3)

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

K. R. Domike and A. M. Donald, “Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin,” Biomacromolecules 8(12), 3930–3937 (2007).
[Crossref] [PubMed]

2006 (4)

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333–366 (2006).
[Crossref] [PubMed]

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

2005 (4)

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
[Crossref]

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

2004 (2)

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

2003 (4)

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85(1), 589–598 (2003).
[Crossref] [PubMed]

2002 (7)

A. P. Demchenko, “The red-edge effect: 30 years of exploration,” Luminescence 17(1), 19–42 (2002).
[Crossref] [PubMed]

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

D. Hamada and C. M. Dobson, “A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea,” Protein Sci. 11(10), 2417–2426 (2002).
[Crossref] [PubMed]

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

2001 (2)

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

2000 (2)

J. R. Lakowicz and H. Sourav, “On spectral relaxation in proteins,” Photochem. Photobiol. 72(4), 421–437 (2000).
[Crossref] [PubMed]

L. C. Serpell, “Alzheimer’s amyloid fibrils: structure and assembly,” Biochim. Biophys. Acta 1502(1), 16–30 (2000).
[Crossref] [PubMed]

1997 (3)

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

1990 (1)

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

1987 (1)

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

1985 (1)

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

1967 (1)

T. Shirahama and A. S. Cohen, “High-resolution electron microscopic analysis of the amyloid fibril,” J. CellBiol. 33(3), 679–708 (1967).
[Crossref]

1962 (1)

B. Rosenberg, “Electrical conductivity of proteins,” Nature 193(4813), 364–365 (1962).
[Crossref] [PubMed]

Adrian, M.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Agrawal, V.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Agren, H.

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

Ahn, K. H.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Amit, M.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Andersson, M. R.

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

Anoop, A.

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

Appel, S.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

Armstead, D. N.

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

Ashkenasy, N.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Atkins, E.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

Backlund, F. G.

F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
[Crossref] [PubMed]

Bäcklund, F. G.

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

Bacskai, B. J.

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Baik, S. H.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Ban, T.

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Barghorn, S.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Bartlam, M.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Belmonte, L.

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Berriman, J.

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

Bertoncini, C. W.

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Betsholtz, C.

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

Beyreuther, K.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

Bich, C.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Blake, C. C. F.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Bohrmann, B.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Bouchard, M.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

Bozdaganyan, M.

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Bragazzi, N.

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Brange, J.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Bromley, E. H. C.

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
[Crossref]

Brownlow, S.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Brunelle, A.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Buell, A. K.

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

Byrnes, H.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Cabral, J. H. M.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Cannon, D.

D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
[Crossref]

D. Cannon and A. M. Donald, “Control of liquid crystallinity of amyloid-forming systems,” Soft Matter 9(10), 2852–2857 (2013).
[Crossref]

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

Carter, C.

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Chan, F. T.

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Chance, K.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Charych, D. H.

D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).

Chattopadhyay, A.

A. Chattopadhyay and H. Sourav, “Dynamic insight into protein structure utilizing red edge excitation shift,” Acc. Chem. Res. 47(1), 12–19 (2014).
[Crossref]

Cheng, G.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Chiti, F.

F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333–366 (2006).
[Crossref] [PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Christie, R. H.

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Cingolani, R.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Claborn, K. A.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Clark, A. H.

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

Cohen, A. S.

T. Shirahama and A. S. Cohen, “High-resolution electron microscopic analysis of the amyloid fibril,” J. CellBiol. 33(3), 679–708 (1967).
[Crossref]

Cohen, R.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

Collingwood, J. F.

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

Cooper, R.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Dauphinot, L.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Davidson, M. R.

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

del Mercato, L. L.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Della Torre, A.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Demchenko, A. P.

A. P. Demchenko, “The red-edge effect: 30 years of exploration,” Luminescence 17(1), 19–42 (2002).
[Crossref] [PubMed]

Desbenoit, N.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Dobson, C. M.

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333–366 (2006).
[Crossref] [PubMed]

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

D. Hamada and C. M. Dobson, “A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea,” Protein Sci. 11(10), 2417–2426 (2002).
[Crossref] [PubMed]

Dobson, C.M.

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

Dodson, G. G.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Doeli, H.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Domike, K. R.

K. R. Domike and A. M. Donald, “Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin,” Int. J. Biol. Macromol. 44(4), 301–310 (2009).
[Crossref] [PubMed]

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

K. R. Domike and A. M. Donald, “Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin,” Biomacromolecules 8(12), 3930–3937 (2007).
[Crossref] [PubMed]

Donald, A. M.

D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
[Crossref]

D. Cannon and A. M. Donald, “Control of liquid crystallinity of amyloid-forming systems,” Soft Matter 9(10), 2852–2857 (2013).
[Crossref]

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

K. R. Domike and A. M. Donald, “Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin,” Int. J. Biol. Macromol. 44(4), 301–310 (2009).
[Crossref] [PubMed]

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

K. R. Domike and A. M. Donald, “Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin,” Biomacromolecules 8(12), 3930–3937 (2007).
[Crossref] [PubMed]

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
[Crossref]

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

Duff, K.

Dunlop, I. E.

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

Duyckaerts, C.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Eichhorn, S. J.

D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
[Crossref]

Elfwing, A.

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

Enejder, A.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Engström, U.

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

Estrada, M.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Exley, C.

E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
[PubMed]

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

Fändrich, M.

M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
[Crossref] [PubMed]

Finch, J.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Finch, J. T.

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

Fink, H.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Flower, D. R.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Foderà, V.

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

Fraser, P. E.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Games, D.

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Gebauer, R.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

Geday, M. A.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Gellerman, G. P.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Goedert, M.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Gosal, W. S.

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

Goto, Y.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Gouras, G. K.

Grigorieff, N.

M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
[Crossref] [PubMed]

Grisanti, L.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

Guptasarma, P.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Hamada, D.

D. Hamada and C. M. Dobson, “A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea,” Protein Sci. 11(10), 2417–2426 (2002).
[Crossref] [PubMed]

Hamedi, M.

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

Hamley, I. W.

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Hankzyc, P.

P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
[Crossref]

Hardin, E.

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

Hassanali, A.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

Hayden, D. W.

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Heo, C. H.

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Herland, A.

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

Hillen, H.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

House, E.

E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
[PubMed]

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Inganäs, O.

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

Jaeger, H.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Jakes, R.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Jiménez, J. L.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

Jin, L-W.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Johansson, J.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

Johansson, P. K.

P. K. Johansson and P. Koelsch, “Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments,” J. Am. Chem. Soc. 136(39), 13598–13601 (2014).
[Crossref] [PubMed]

Johnson, K. H.

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Jones, K.

E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
[PubMed]

Jun, Y. W.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Jung, J.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Kahr, B.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Kajdasz, S. T.

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Kaminski, C. F.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

Kaminski Schierle, G. S.

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

Kaminsky, W.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Karlsson, R. H.

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

Kawasaki, T.

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Kierdaszuk, B.

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85(1), 589–598 (2003).
[Crossref] [PubMed]

Kim, D.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Kim, D. H.

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

Kim, H. J.

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Kim, H.M

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Kim, K. H.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Kim, Y. S.

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Kishan, K. V. R.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Kiskis, J.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Kitaura, N.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Klaminski, C. F.

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Klunk, W. E.

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

Knowles, T. P. J.

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

Ko, D. K.

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

Kobayashi, A.

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Koelsch, P.

P. K. Johansson and P. Koelsch, “Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments,” J. Am. Chem. Soc. 136(39), 13598–13601 (2014).
[Crossref] [PubMed]

Kongsted, J.

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

Krebs, M. R. H.

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
[Crossref]

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

Kuboi, R.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Kumita, J. R.

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Kurimoto, M.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Kwan, A. C.

Lakowicz, J. R.

J. R. Lakowicz and H. Sourav, “On spectral relaxation in proteins,” Photochem. Photobiol. 72(4), 421–437 (2000).
[Crossref] [PubMed]

Lamprou, D. A.

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

Laprevote, O.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Lazar, A. N.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Lee, J.

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Lee, J. H.

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

Lee, V. M.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Lesk, A.

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

Li, J-Y.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Lin, X-M.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Lindgren, L. J.

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

Lindquist, S. L.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Lührs, T.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

MacPhee, C. E.

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

Maezawa, I.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Mahou, P.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

Mains, J.

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

Maji, S. K.

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

Makin, O. S.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

Mankar, S.

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

Marquer, C.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Maruccio, G.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Masters, C. L.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

Mathis, C. A.

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

McDonald, B. L.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

McIntosh, L.

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

Miller, A. F.

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

Mook-Jung, I.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Moon, H.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Morigaki, K.

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Mueller, R.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Mukherjee, S.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Multhaup, G.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

Murugan, N. A.

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

Musumeci, C.

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

Naiki, H.

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Nettleton, E. J.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

Nicolini, C.

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Nordberg, A.

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

Nordén, B.

P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
[Crossref]

North, A. C. T.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Novakovskaya, Y. V.

Y. V. Novakovskaya, “Conjugation in hydrogen-bonded systems,” Struct. Chem. 23(4), 1253–1266 (2012).
[Crossref]

Nyberg, L.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

O’Brien, T. D.

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Oh, M. K.

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

Ohnishi, R.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Oswald, I. D.

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

Pallbo, J.

F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
[Crossref] [PubMed]

Panchal, M.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Park, B. S.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Parthasarathy, R.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Pechkova, E.

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Pepys, M. B.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Perutz, M. F.

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

Petit, V. W.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Pinotsi, D.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

Polikarpov, I.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Pompa, P. P.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Pudney, P. D. A.

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

Riek, R.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Riek-Loher, D.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Rinaldi, R.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Ritter, C.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Rizzo, A.

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

Roberts, C. J.

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

Robinson, C. V.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

Rogers, S. S.

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

Rosenberg, B.

B. Rosenberg, “Electrical conductivity of proteins,” Nature 193(4813), 364–365 (1962).
[Crossref] [PubMed]

Ross-Murphy, S. B.

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

Sabella, S.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Saibil, H. R.

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

Samoc, M.

P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
[Crossref]

Sawicki, G.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Sawyer, L.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Schenk, D.

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Schiebel, T.

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

Schierle, G. S. K.

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Schmidt, M.

M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
[Crossref] [PubMed]

Schmidt, M. L.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Schubert, D.

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

Scott, D. J.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Sen, S.

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

Serpell, L. C.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

L. C. Serpell, “Alzheimer’s amyloid fibrils: structure and assembly,” Biochim. Biophys. Acta 1502(1), 16–30 (2000).
[Crossref] [PubMed]

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Seubert, P.

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Sharma, S.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Sharp, J. S.

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

Sharpe, S.

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

Shimanouchi, T.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Shimauchi, N.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Shirahama, T.

T. Shirahama and A. S. Cohen, “High-resolution electron microscopic analysis of the amyloid fibril,” J. CellBiol. 33(3), 679–708 (1967).
[Crossref]

Shukla, A.

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Sikorski, P.

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

Simms, G.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

Simonetti, K.

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

Singha, S.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Smith, J. F.

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

Smith, M. I.

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

Sohraby, F.

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

Solin, N.

F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
[Crossref] [PubMed]

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

Song, H.

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

Song, W. K.

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

Sourav, H.

A. Chattopadhyay and H. Sourav, “Dynamic insight into protein structure utilizing red edge excitation shift,” Acc. Chem. Res. 47(1), 12–19 (2014).
[Crossref]

J. R. Lakowicz and H. Sourav, “On spectral relaxation in proteins,” Photochem. Photobiol. 72(4), 421–437 (2000).
[Crossref] [PubMed]

Spillantini, M. G.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Striebinger, A.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Sunde, M.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

Tamburro, A. M.

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

Tanaka, H.

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

Thyr, J.

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Touboul, D.

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Trojanowski, J. Q.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

Tsutsui, T.

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

Ullrich, K.

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Umakoshi, H.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Urquhart, A. J.

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

van der Linden, E.

D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

Venema, P.

D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).

Walsh, P.

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

Wang, T.

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

Webb, W. W.

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimers pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Weinman, N. A.

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

Welland, M. E.

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

Wernstedt, C.

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Westermark, G. T.

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

Westermark, P.

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Wilander, E.

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Wilson, A.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Wittingham, J. L.

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

Wlodarczyk, J.

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85(1), 589–598 (2003).
[Crossref] [PubMed]

Yagi, H.

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Yau, J.

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

Yewdall, S. J.

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Yuba, S.

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

Zalesny, R.

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Acc. Chem. Res. (1)

A. Chattopadhyay and H. Sourav, “Dynamic insight into protein structure utilizing red edge excitation shift,” Acc. Chem. Res. 47(1), 12–19 (2014).
[Crossref]

ACS Omega. (1)

D. Cannon, S. J. Eichhorn, and A. M. Donald, “Structure of spherulites in insulin, β-lactoglobulin, and Amyloid β,” ACS Omega. 1(5), 915–922 (2016).
[Crossref]

Acta Neuropathol. (1)

A. N. Lazar, A. N. Lazar, C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprevote, A. Brunelle, and C. Duyckaerts, “Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients,” Acta Neuropathol. 125(1), 133–144 (2013).
[Crossref]

Adv. Funct. Mater. (1)

M. Amit, S. Appel, R. Cohen, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Hybrid proton and electron transport in peptide fibrils,” Adv. Funct. Mater. 24(37), 5873–5880 (2014).
[Crossref]

Analyst (1)

F. T. Chan, G. S. K. Schierle, J. R. Kumita, C. W. Bertoncini, C. M. Dobson, and C. F. Klaminski, “Protein amyloids develop an intrinsic fluorescence signature during aggregation,” Analyst 138(7), 2156–2162 (2013).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333–366 (2006).
[Crossref] [PubMed]

Arch. Biochem. Biophys. (1)

A. Shukla, S. Mukherjee, S. Sharma, V. Agrawal, K. V. R. Kishan, and P. Guptasarma, “A novel UV laser-induced visible blue radiation from protein crystals and aggregates: scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding?” Arch. Biochem. Biophys. 428(2), 144–153 (2004).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

T. Shimanouchi, N. Shimauchi, R. Ohnishi, N. Kitaura, H. Yagi, Y. Goto, H. Umakoshi, and R. Kuboi, “Formation of spherulitic amyloid β aggregate by anionic liposomes,” Biochem. Biophys. Res. Commun. 426(2), 165–171 (2012).
[Crossref] [PubMed]

Biochemistry (1)

H. Yagi, T. Ban, K. Morigaki, H. Naiki, and Y. Goto, “Visualization and classification of amyloid β supramolecular assemblies,” Biochemistry 46(51), 15009–15017 (2007).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

L. C. Serpell, “Alzheimer’s amyloid fibrils: structure and assembly,” Biochim. Biophys. Acta 1502(1), 16–30 (2000).
[Crossref] [PubMed]

Biomacromolecules (2)

S. Sharpe, K. Simonetti, J. Yau, and P. Walsh, “Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG,” Biomacromolecules 12(5), 1546–1555 (2010).
[Crossref]

K. R. Domike and A. M. Donald, “Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of β-lactoglobulin and insulin,” Biomacromolecules 8(12), 3930–3937 (2007).
[Crossref] [PubMed]

Biophys. J. (3)

M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophys. J. 88(3), 2013–2021 (2005).
[Crossref]

S. S. Rogers, M. R. H. Krebs, E. H. C. Bromley, E. van der Linden, and A. M. Donald, “Optical microscopy of growing insulin amyloid spherulites on surfaces in vitro,” Biophys. J. 90(3), 1043–1054 (2006).
[Crossref]

J. Wlodarczyk and B. Kierdaszuk, “Interpretation of fluorescence decays using a power-like model,” Biophys. J. 85(1), 589–598 (2003).
[Crossref] [PubMed]

Biopolymers (1)

F. G. Backlund, J. Pallbo, and N. Solin, “Controlling amyloid fibril formation by partial stirring,” Biopolymers 105(5), 249–259 (2016).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (3)

C. H. Heo, K. H. Kim, H. J. Kim, S. H. Baik, H. Song, Y. S. Kim, J. Lee, I. Mook-Jung, and H.M Kim, “A two-photon fluorescent probe for amyloid-β plaques in living mice,” Chem. Commun. (Camb.) 49(13), 1303–1305 (2013).
[Crossref]

N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, “Promising two-photon probes for in vivo detection of β amyloid deposits,” Chem. Commun. (Camb.) 50(79), 11694–11697 (2014).
[Crossref]

J. Mains, D. A. Lamprou, L. McIntosh, I. D. Oswald, and A. J. Urquhart, “Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles,” Chem. Commun. (Camb.) 49(44), 5082–5084 (2013).
[Crossref]

ChemBioChem (1)

D. Pinotsi, A. K. Buell, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, “A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence,” ChemBioChem 14(7), 846–850 (2013).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

M. I. Smith, V. Foderà, J. S. Sharp, C. J. Roberts, and A. M. Donald, “Factors affecting the formation of insulin amyloid spherulites,” Colloids Surf. B Biointerfaces 89, 216–222 (2012).
[Crossref]

Crit. Rev. Eukaryot. Gene Expr. (1)

E. Pechkova, N. Bragazzi, M. Bozdaganyan, L. Belmonte, and C. Nicolini, “A review of the strategies for obtaining high-quality crystals utilizing nanotechnologies and microgravity,” Crit. Rev. Eukaryot. Gene Expr. 24(4), 325–339 (2014).
[Crossref] [PubMed]

Eur. Phys. J. E: Soft Matter Biol. Phys. (1)

K. R. Domike, E. Hardin, D. N. Armstead, and A. M. Donald, “Investigating the inner structure of irregular beta-lactoglobulin spherulites,” Eur. Phys. J. E: Soft Matter Biol. Phys. 29(2), 173–182 (2009).
[Crossref]

Faraday Discuss. (1)

E. H. C. Bromley, M. R. H. Krebs, and A. M. Donald, “Aggregation across the length-scales in β-lactoglobulin,” Faraday Discuss. 128(4), 13–27 (2005).
[Crossref]

Food Funct. (1)

D. H. Charych, P. Venema, and E. van der Linden, “Fibrillar structures in food,” Food Funct. 3(3), 221–227 (2013).

Int. J. Biol. Macromol. (1)

K. R. Domike and A. M. Donald, “Kinetics of spherulite formation and growth: salt and protein concentration dependence on proteins beta-lactoglobulin and insulin,” Int. J. Biol. Macromol. 44(4), 301–310 (2009).
[Crossref] [PubMed]

J. Alzheimers Dis. (2)

C. Exley, E. House, J. F. Collingwood, M. R. Davidson, D. Cannon, and A. M. Donald, “Spherulites of Aβ42 in vitro and in Alzheimer’s disease,” J. Alzheimers Dis. 20(4), 1159–1165 (2010).
[PubMed]

E. House, K. Jones, and C. Exley, “Spherulites in human brain tissue are composed of β sheets of amyloid and resemble senile plaques,” J. Alzheimers Dis. 25(1), 43–46 (2011).
[PubMed]

J. Am. Chem. Soc. (3)

D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, and G. S. K. Schierle, “Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures,” J. Am. Chem. Soc. 138(4), 3046–3057 (2016).
[Crossref] [PubMed]

D. Kim, H. Moon, S. H. Baik, S. Singha, Y. W. Jun, T. Wang, K. H. Kim, B. S. Park, J. Jung, I. Mook-Jung, and K. H. Ahn, “Two-photon absorbing dyes with minimal autofluorescence in tissue imaging: application to in vivo imaging of amyloid-β plaques with a negligible background signal,” J. Am. Chem. Soc. 137(21), 6781–6789 (2015).
[Crossref] [PubMed]

P. K. Johansson and P. Koelsch, “Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments,” J. Am. Chem. Soc. 136(39), 13598–13601 (2014).
[Crossref] [PubMed]

J. Biol. Chem. (1)

T. Ban, K. Morigaki, H. Yagi, T. Kawasaki, A. Kobayashi, S. Yuba, H. Naiki, and Y. Goto, “Real-time and single fibril observation of the formation of amyloid β spherulitic structures,” J. Biol. Chem. 281(44), 33677–33683 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. H. Lee, D. H. Kim, W. K. Song, M. K. Oh, and D. K. Ko, “Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy,” J. Biomed. Opt. 20(5), 56013 (2015).
[Crossref] [PubMed]

J. CellBiol. (1)

T. Shirahama and A. S. Cohen, “High-resolution electron microscopic analysis of the amyloid fibril,” J. CellBiol. 33(3), 679–708 (1967).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

B. J. Bacskai, W. E. Klunk, C. A. Mathis, and B. T. Hyman, “Imaging amyloid-β deposits in vivo,” J. Cereb. Blood Flow Metab. 22(9), 1035–1041 (2002).
[Crossref] [PubMed]

J. Mater. Chem. C (1)

A. Elfwing, F. G. Bäcklund, C. Musumeci, O. Inganäs, and N. Solin, “Protein nanowires with conductive properties,” J. Mater. Chem. C 3(25), 6499–6504 (2015).
[Crossref]

J. Mol. Biol. (2)

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys, and C. C. F. Blake, “Common core structure of amyloid fibrils by synchrotron X-ray diffraction,” J. Mol. Biol. 273(3), 729–739 (1997).
[Crossref] [PubMed]

J. L. Wittingham, D. J. Scott, K. Chance, A. Wilson, J. Finch, J. Brange, and G. G. Dodson, “Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation,” J. Mol. Biol. 318(2), 479–490 (2002).
[Crossref]

J. Neurosci. (1)

R. H. Christie, B. J. Bacskai, W. R. Zipfel, R. M. Williams, S. T. Kajdasz, W. W. Webb, and B. T. Hyman, “Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy,” J. Neurosci. 21(3), 858–864 (2001).
[PubMed]

Langmuir (1)

W. S. Gosal, A. H. Clark, P. D. A. Pudney, and S. B. Ross-Murphy, “Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin,” Langmuir 18(19), 7174–7181 (2002).
[Crossref]

Luminescence (1)

A. P. Demchenko, “The red-edge effect: 30 years of exploration,” Luminescence 17(1), 19–42 (2002).
[Crossref] [PubMed]

Nano Lett. (3)

H. Tanaka, A. Herland, L. J. Lindgren, T. Tsutsui, M. R. Andersson, and O. Inganäs, “Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer,” Nano Lett. 8(9), 2858–2861 (2008).
[Crossref] [PubMed]

A. Rizzo, N. Solin, L. J. Lindgren, M. R. Andersson, and O. Inganäs, “White light with phosphorescent protein fibrils in OLEDs,” Nano Lett. 10(6), 2225–2230 (2010).
[Crossref] [PubMed]

M. Hamedi, A. Herland, R. H. Karlsson, and O. Inganäs, “Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT,” Nano Lett. 8(6), 1736–1740 (2008).
[Crossref] [PubMed]

Nano Rev. (1)

S. Mankar, A. Anoop, S. Sen, and S. K. Maji, “Nanomaterials: amyloids reflect their brighter side,” Nano Rev. 2, 6032 (2011).
[Crossref]

Nat. Med. (1)

B. J. Bacskai, S. T. Kajdasz, R. H. Christie, C. Carter, D. Games, P. Seubert, D. Schenk, and B. T. Hyman, “Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy,” Nat. Med. 7(3), 369–372 (2001).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Hankzyc, M. Samoc, and B. Nordén, “Multiphoton absorption in amyloid protein fibres,” Nat. Photonics 7(12), 969–972 (2013).
[Crossref]

Nature (2)

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Leqy bodies,” Nature 388(6645), 839–840 (1997).
[Crossref] [PubMed]

B. Rosenberg, “Electrical conductivity of proteins,” Nature 193(4813), 364–365 (1962).
[Crossref] [PubMed]

Neurobiol. Dis. (1)

G. P. Gellerman, H. Byrnes, A. Striebinger, K. Ullrich, R. Mueller, H. Hillen, and S. Barghorn, “Aβ-globulomers are formed independently of the fibril pathway,” Neurobiol. Dis. 30(2), 212–220 (2008).
[Crossref]

Opt. Express (1)

Photochem. Photobiol. (1)

J. R. Lakowicz and H. Sourav, “On spectral relaxation in proteins,” Photochem. Photobiol. 72(4), 421–437 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (13)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

M. R. H. Krebs, C. E. MacPhee, A. F. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proc. Natl. Acad. Sci. U. S. A. 101(40), 14420–14424 (2004).
[Crossref] [PubMed]

L-W. Jin, K. A. Claborn, M. Kurimoto, M. A. Geday, I. Maezawa, F. Sohraby, M. Estrada, W. Kaminsky, and B. Kahr, “Imaging linear birefringence and dichroism in cerebral amyloid pathologies,” Proc. Natl. Acad. Sci. U. S. A. 100(26), 15294–15298 (2003).
[Crossref] [PubMed]

T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Doeli, D. Schubert, and R. Riek, “3D structure of Alzheimer’s amyloid-β(1–42) fibrils,” Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005).
[Crossref] [PubMed]

M. F. Perutz, J. T. Finch, J. Berriman, and A. Lesk, “Amyloid fibers are water-filled nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 99(8), 5591–5595 (2002).
[Crossref] [PubMed]

L. L. del Mercato, P. P. Pompa, G. Maruccio, A. Della Torre, S. Sabella, A. M. Tamburro, R. Cingolani, and R. Rinaldi, “Charge transport and intrinsic fluorescence in amyloid-like fibrils,” Proc. Natl. Acad. Sci. U. S. A. 104(46), 18019–18024 (2007).
[Crossref] [PubMed]

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99(4), 9196–9201 (2002).
[Crossref] [PubMed]

T. Schiebel, R. Parthasarathy, G. Sawicki, X-M. Lin, H. Jaeger, and S. L. Lindquist, “Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. U. S. A. 100(8), 4527–4532 (2003).
[Crossref]

C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald, and K. Beyreuther, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proc. Natl. Acad. Sci. U. S. A. 82(12), 4245–4249 (1985).
[Crossref] [PubMed]

P. Westermark, C. Wernstedt, E. Wilander, D. W. Hayden, T. D. O’Brien, and K. H. Johnson, “Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells,” Proc. Natl. Acad. Sci. U. S. A. 84(11), 3881–3885 (1987).
[Crossref] [PubMed]

P. Westermark, U. Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz, “Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation,” Proc. Natl. Acad. Sci. U. S. A. 87(13), 5036–5040 (1990).
[Crossref] [PubMed]

O. S. Makin, E. Atkins, P. Sikorski, J. Johansson, and L. C. Serpell, “Molecular basis for amyloid fibril formation and stability,” Proc. Natl. Acad. Sci. U. S. A. 102(2), 315–320 (2005).
[Crossref] [PubMed]

J. F. Smith, T. P. J. Knowles, C.M. Dobson, C. E. MacPhee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103(43), 15806–15811 (2006).
[Crossref] [PubMed]

Protein Sci. (1)

D. Hamada and C. M. Dobson, “A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea,” Protein Sci. 11(10), 2417–2426 (2002).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Kiskis, H. Fink, L. Nyberg, J. Thyr, J-Y. Li, and A. Enejder, “Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy,” Sci. Rep. 5, 13489 (2015).
[Crossref]

Soft Matter (2)

D. Cannon and A. M. Donald, “Control of liquid crystallinity of amyloid-forming systems,” Soft Matter 9(10), 2852–2857 (2013).
[Crossref]

M. Amit, G. Cheng, I. W. Hamley, and N. Ashkenasy, “Conductance of amyloid β based peptide filaments: structure-function relations,” Soft Matter 8(33), 8690–8696 (2012).
[Crossref]

Struct. Chem. (1)

Y. V. Novakovskaya, “Conjugation in hydrogen-bonded systems,” Struct. Chem. 23(4), 1253–1266 (2012).
[Crossref]

Structure (1)

S. Brownlow, J. H. M. Cabral, R. Cooper, D. R. Flower, S. J. Yewdall, I. Polikarpov, A. C. T. North, and L. Sawyer, “Bovine beta-lactoglobulin at 1.8 Å resolution – still an enigmatic lipocalin,” Structure 5(4), 481–495 (1997).
[Crossref] [PubMed]

Trends Biochem. Sci. (1)

M. Fändrich, M. Schmidt, and N. Grigorieff, “Recent progress in understanding Alzheimer’s β-amyloid structures,” Trends Biochem. Sci. 36(6), 338–345 (2011).
[Crossref] [PubMed]

Supplementary Material (4)

NameDescription
» Visualization 1: MOV (558 KB)      SHG Half Insulin Spherulite
» Visualization 2: MOV (274 KB)      MPEF Half Insulin Spherulite
» Visualization 3: MOV (357 KB)      SHG Insulin Spherulite
» Visualization 4: MOV (271 KB)      MPEF Insulin Spherulite

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Preparation and characterization of amyloid fibers and spherulites. (a) Insulin [64] and β-lactoglobulin [65] form fibers or spherulites, depending on the experimental conditions. AFM images of amyloid fibers from bovine insulin (b) and β-LG from bovine milk (c); bars are 500 nm for both images. Cross-polarized microscopy of the spherulites from insulin (d) and β-LG from bovine milk (e); bars are 150 μm for (d) and 200 μm for (e). Normalized absorption spectra of the native proteins (black), amyloid fibers (red), and amyloid spherulites (blue) from the bovine insulin (f) and the β-LG from bovine milk (g), in 25 mM HCl solutions at ∼5 mg/mL protein concentration.

Fig. 2
Fig. 2

Intrinsic fluorescence. The data for the intrinsic fluorescence from the β-LG from bovine milk (a–f) and bovine insulin (g–l), at ∼5 mg/mL in 25 mM HCl water solutions. Fluorescence emission spectra are shown for the native proteins (a, g), the amyloid fibers (b, h), and the amyloid spherulites (c, i), when λexc ranges from 310 to 450 nm. The emission peaks are plotted versus the λexc for both β-LG (d) and insulin (j) for the respective types of samples: native proteins (green, ▵), amyloid fibers (red, ○), and amyloid spherulites (blue, □). The fluorescence decays for λexc at 375 nm (e, k) and 470 nm (f, l) are presented for the native proteins (green), the amyloid spherulites (blue), and the amyloid fibers (red) – as well as the instrument response function (black) measured with 250 nm poly-L-lactic acid particles. The lifetimes (ns) and fractional intensities for double-exponential fits of the decays are shown for both the β-LG (Table 1) and insulin (Table 2) samples with λexc at 375 nm and 470 nm. The 95 % confidence intervals for the fitted parameters are included.

Fig. 3
Fig. 3

Label-free imaging of amyloid spherulites. Spherulites from bovine insulin (a–d) and β-LG from bovine milk (e–h) imaged with confocal fluorescence (a,e - red), MPEF (b,f - green), and SHG (c,g - blue). MPEF and SHG were imaged simultaneously in different channels (420–460 nm and 495–540 nm, respectively) and overlays of the two are shown (d,h). Scale bars: 25 μm (a,e), 20 μm (b–d), and 40 μm (f–h). The λexc were 405 nm (a,e) and 910 nm (b–d,f–h). The power dependences for SHG and MPEF were measured for four replicates of both structures with powers ranging from 425–1190 mW. The error bars represent the St. Dev. and the slopes were obtained with least square fits.

Fig. 4
Fig. 4

Contrast between the amorphous core and fibrillar region. For the bovine insulin spherulites, the relative intensities for the core and the fibrillar regions were evaluated by taking regions of interest (dashed blue boxes) linescans for the confocal fluorescence (a - red), MPEF (b - green) and SHG (c - blue). The scale bar is 25 μm for all spherulites and the λexc were 405 nm (a) and 910 nm (b, c), respectively.

Fig. 5
Fig. 5

Various cross-sections for the spherulites. Cross-sections of a spherulite from β-LG from bovine milk (a) at 0 μm (top row) and 12.5 μm (bottom row) from the center with SHG (blue/left), MPEF (green/middle), and overlays (right); the scale bar is 25 μm. Cross-sections of a spherulite from bovine insulin (b) at 0 μm (top row), 21.3 μm (middle row), and 27.5 μm (bottom row) from the center with SHG (blue/left), MPEF (green/middle), and overlays (right); the scale bar is 25 μm. λexc was 910 nm in all cases. 3D-animations created from a z-stack of a 37 μm insulin spherulite are provided in the supplementary material. Both half the spherulite imaged with SHG ( Visualization 1) and MPEF ( Visualization 3), as well as the entire spherulite imaged with SHG ( Visualization 2) and MPEF ( Visualization 4) are shown.

Fig. 6
Fig. 6

Imaging of cracked spherulites. SHG images (a, d - blue), MPEF images (b, e - green), and overlays (c,f) of cracked spherulites from bovine insulin (a–c) and β-LG from bovine milk (d–f); the scale bars are 25 μm (a–c) and 50 μm (d–f), and λexc was 910 nm. Note that the images of the insulin spherulite were not recorded at its center and, therefore, lack the amorphous core.

Fig. 7
Fig. 7

Excitation wavelength dependence in MPEF images. Ratio of average intensities for the insulin spherulites in the two detector channels. The bandpass filters windows compared are (a) 420–460 nm vs. 495–540 nm and (b) 460–500 nm vs. 520–560 nm. The error bars are St. Dev. from measurements on four spherulites and the excitation laser power was 80–400 mW, depending on the wavelength. The dashed red lines are splines intended as visual guide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Abs = log [ I obs I 0 ] + log [ 1 A ] + log [ 1 B λ 4 ] .

Metrics