Abstract

Phase-resolved OCT and fluorescence microscopy were used simultaneously to examine stereotypic patterns of neural activity in the isolated Drosophila central nervous system. Both imaging modalities were focused on individually identified bursicon neurons known to be involved in a fixed action pattern initiated by ecdysis-triggering hormone. We observed clear correspondence of OCT intensity, phase fluctuations, and activity-dependent calcium-induced fluorescence.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging

Benedikt W. Graf, Tyler S. Ralston, Han-Jo Ko, and Stephen A. Boppart
Opt. Express 17(16) 13447-13457 (2009)

Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy

Leonardo Sacconi, Jonathan Mapelli, Daniela Gandolfi, Jacopo Lotti, Rodney P. O’Connor, Egidio D’Angelo, and Francesco S. Pavone
Opt. Express 16(19) 14910-14921 (2008)

Intrinsic optical signal imaging of glucose-stimulated insulin secreting β-cells

Yi-Chao Li, Wan-Xing Cui, Xu-Jing Wang, Franklin Amthor, Rong-Wen Lu, Anthony Thompson, and Xin-Cheng Yao
Opt. Express 19(1) 99-106 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
    [Crossref] [PubMed]
  2. C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
    [Crossref] [PubMed]
  3. B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
    [Crossref] [PubMed]
  4. C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
    [Crossref] [PubMed]
  5. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
    [Crossref] [PubMed]
  6. S. A. Kim and S. B. Jun, “In-vivo Optical Measurement of Neural Activity in the Brain,” Exp. Neurobiol. 22(3), 158–166 (2013).
    [Crossref] [PubMed]
  7. J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
    [Crossref] [PubMed]
  8. W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
    [Crossref] [PubMed]
  9. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  10. R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
    [Crossref] [PubMed]
  11. G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321(6070), 579–585 (1986).
    [Crossref] [PubMed]
  12. M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
    [Crossref] [PubMed]
  13. D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
    [Crossref] [PubMed]
  14. C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
    [PubMed]
  15. D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108(3), 278–281 (1949).
    [Crossref]
  16. B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
    [Crossref] [PubMed]
  17. D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111(3-4), 304–327 (1950).
    [Crossref] [PubMed]
  18. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
    [Crossref] [PubMed]
  19. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
    [Crossref] [PubMed]
  20. L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
    [Crossref] [PubMed]
  21. L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
    [PubMed]
  22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  23. K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
    [Crossref] [PubMed]
  24. A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
    [Crossref] [PubMed]
  25. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [Crossref] [PubMed]
  26. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
    [Crossref] [PubMed]
  27. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
    [Crossref] [PubMed]
  28. G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
    [Crossref] [PubMed]
  29. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
    [Crossref] [PubMed]
  30. A. A. Moayed, S. Hariri, V. Choh, and K. Bizheva, “In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography,” Opt. Lett. 36(23), 4575–4577 (2011).
    [Crossref] [PubMed]
  31. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
    [Crossref] [PubMed]
  32. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
    [Crossref] [PubMed]
  33. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [Crossref] [PubMed]
  34. B. W. Graf, T. S. Ralston, H.-J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
    [Crossref] [PubMed]
  35. M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
    [Crossref] [PubMed]
  36. V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
    [Crossref] [PubMed]
  37. M. M. Eberle, M. S. Hsu, C. L. Rodriguez, J. I. Szu, M. C. Oliveira, D. K. Binder, and B. H. Park, “Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography,” Biomed. Opt. Express 6(5), 1812–1827 (2015).
    [Crossref] [PubMed]
  38. Fujimoto, J.G., I. Gorczyńska, J.A. Izatt, J. Wyszkowska, D. Bukowska, V.V. Tuchin, D. Ruminski, K. Karnowski, M. Stankiewicz, and M. Wojtkowski, OCT detection of neural activity in American cockroach nervous system.8571 85711V (2013).
  39. T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004).
    [Crossref] [PubMed]
  40. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
    [Crossref] [PubMed]
  41. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
    [Crossref] [PubMed]
  42. T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
    [Crossref] [PubMed]
  43. Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
    [Crossref] [PubMed]
  44. T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
    [PubMed]
  45. B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
    [Crossref] [PubMed]
  46. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
    [Crossref] [PubMed]
  47. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
    [Crossref] [PubMed]
  48. D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38(3), 266–268 (2013).
    [Crossref] [PubMed]
  49. S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
    [Crossref] [PubMed]
  50. Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
    [Crossref] [PubMed]
  51. Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
    [Crossref] [PubMed]
  52. D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
    [Crossref] [PubMed]
  53. L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
    [Crossref] [PubMed]
  54. D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
    [Crossref] [PubMed]
  55. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref] [PubMed]
  56. S. Yazdanfar, C. Yang, M. Sarunic, and J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13(2), 410–416 (2005).
    [Crossref] [PubMed]

2016 (1)

B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
[Crossref] [PubMed]

2015 (4)

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

M. M. Eberle, M. S. Hsu, C. L. Rodriguez, J. I. Szu, M. C. Oliveira, D. K. Binder, and B. H. Park, “Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography,” Biomed. Opt. Express 6(5), 1812–1827 (2015).
[Crossref] [PubMed]

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

2014 (2)

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

2013 (5)

S. A. Kim and S. B. Jun, “In-vivo Optical Measurement of Neural Activity in the Brain,” Exp. Neurobiol. 22(3), 158–166 (2013).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38(3), 266–268 (2013).
[Crossref] [PubMed]

2012 (4)

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

M. M. Eberle, C. L. Reynolds, J. I. Szu, Y. Wang, A. M. Hansen, M. S. Hsu, M. S. Islam, D. K. Binder, and B. H. Park, “In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography,” Biomed. Opt. Express 3(11), 2700–2706 (2012).
[Crossref] [PubMed]

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
[Crossref] [PubMed]

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
[PubMed]

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

2009 (5)

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref] [PubMed]

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

B. W. Graf, T. S. Ralston, H.-J. Ko, and S. A. Boppart, “Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging,” Opt. Express 17(16), 13447–13457 (2009).
[Crossref] [PubMed]

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
[Crossref] [PubMed]

2007 (5)

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
[Crossref] [PubMed]

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

2006 (5)

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (3)

2003 (1)

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

1999 (1)

1993 (1)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (2)

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

1986 (1)

G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321(6070), 579–585 (1986).
[Crossref] [PubMed]

1978 (1)

L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
[Crossref] [PubMed]

1977 (1)

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

1973 (1)

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

1968 (2)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[Crossref] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

1950 (1)

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111(3-4), 304–327 (1950).
[Crossref] [PubMed]

1949 (1)

D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108(3), 278–281 (1949).
[Crossref]

Adams, M. E.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Aggarwal, A.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Agoncillo, T.

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Akerboom, J.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Akhlagh Moayed, A.

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

Akkin, T.

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
[PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref] [PubMed]

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref] [PubMed]

T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004).
[Crossref] [PubMed]

Amaechi, B. T.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Amblard, F.

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Arfin, S. K.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Auger, M.

Baier, H.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Baker, B. J.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Baohan, A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Bargmann, C. I.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Barton, J. K.

Beaurepaire, E.

Becker, E. D.

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

Bernstein, J. G.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Binder, D. K.

Bizheva, K.

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

A. A. Moayed, S. Hariri, V. Choh, and K. Bizheva, “In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography,” Opt. Lett. 36(23), 4575–4577 (2011).
[Crossref] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Black, A. J.

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

Blasdel, G. G.

G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321(6070), 579–585 (1986).
[Crossref] [PubMed]

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Boppart, S. A.

Borghuis, B. G.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Boudoux, C.

Bouma, B.

Boyden, E. S.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Branson, K.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Buzsáki, G.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Calderón, N. C.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T. W.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Chen-Bee, C. H.

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

Cho, K.-H.

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Choh, V.

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

A. A. Moayed, S. Hariri, V. Choh, and K. Bizheva, “In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography,” Opt. Lett. 36(23), 4575–4577 (2011).
[Crossref] [PubMed]

Chu, M. C.

Cohen, L. B.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
[Crossref] [PubMed]

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[Crossref] [PubMed]

Dai, L.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Dasari, R. R.

Davé, D.

de Boer, J.

de Boer, J. F.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref] [PubMed]

Devinsky, O.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Dirnagl, U.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Doyle, W.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Drexler, W.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Duker, J. S.

Eberle, M. M.

Engert, F.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Esposti, F.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fang-Yen, C.

Feld, M. S.

Filosa, A.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Frank, J. A.

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

Freeman, J.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Frostig, R. D.

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

Galizia, C. G.

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Gao, W.

Garaschuk, O.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Gelinas, J. N.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Godbout, N.

Gordus, A.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Graf, B. W.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grinvald, A.

L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
[Crossref] [PubMed]

Hai, A.

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Han, M.-R.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

Hanazono, G.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

Hansen, A. M.

Hariri, L. P.

Hariri, S.

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

A. A. Moayed, S. Hariri, V. Choh, and K. Bizheva, “In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography,” Opt. Lett. 36(23), 4575–4577 (2011).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Higham, S. M.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Hill, B. C.

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

Hill, D. K.

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111(3-4), 304–327 (1950).
[Crossref] [PubMed]

D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108(3), 278–281 (1949).
[Crossref]

Hille, B.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[Crossref] [PubMed]

Hock, C.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Höckendorf, B.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Homma, R.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Hsu, M. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Islam, M. S.

Izatt, J.

Jackson, D. A.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Jayaraman, V.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Jin, L.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Jing, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Jonnal, R. S.

Joo, C.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref] [PubMed]

Jun, S. B.

S. A. Kim and S. B. Jun, “In-vivo Optical Measurement of Neural Activity in the Brain,” Exp. Neurobiol. 22(3), 158–166 (2013).
[Crossref] [PubMed]

Kay, A. R.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Keller, P. J.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Kerr, R. A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Keynes, R. D.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[Crossref] [PubMed]

D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108(3), 278–281 (1949).
[Crossref]

Khakh, B. S.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Khodagholy, D.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Kim, D. S.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Kim, D.-H.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

Kim, S. A.

S. A. Kim and S. B. Jun, “In-vivo Optical Measurement of Neural Activity in the Brain,” Exp. Neurobiol. 22(3), 158–166 (2013).
[Crossref] [PubMed]

Kim, Y.-J.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Kimmel, B. E.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Kinney, J. P.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Kirk, R. W.

Ko, H.-J.

Kolbitsch, C.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
[Crossref] [PubMed]

Konnerth, A.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Kopell, N.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Kracun, S.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Lagnado, L.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Landowne, D.

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
[PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref] [PubMed]

Lay, C. C.

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

Le Bihan, D.

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

Lee, G.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

Lee, S. S.

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

Lee, T. M.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Leitgeb, R. A.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
[Crossref] [PubMed]

Lemon, W. C.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Li, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Li, L.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Liang, S.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, G.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Looger, L. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Lorenser, D.

Lu, Y.

B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
[Crossref] [PubMed]

Macklin, J. J.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Madore, W.-J.

Malliaras, G. G.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Marvin, J. S.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Maslov, K. I.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

McDole, K.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

McLaughlin, R. A.

Mertz, J.

Michelson, R. P.

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

Miller, D. T.

Milner, T.

Miyake, Y.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

Mizoguchi, A.

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Moayed, A. A.

Moonen, C. T.

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

Moore-Kochlacs, C.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Moreaux, L.

Mujat, M.

Mutlu, S.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Narula, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Nokes, M. A.

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Oliveira, M. C.

Orger, M. B.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Park, B.

Park, B. H.

Park, Y.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Pierce, M. C.

Planck, J.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Podoleanu, A.

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Portugues, R.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Považay, B.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Pulver, S. R.

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Quirk, B. C.

Rajagopalan, U. M.

Ralston, T. S.

Rao, B.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Renninger, S. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Reynolds, C. L.

Rha, J.

Rodriguez, C. L.

Roller, L.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

Rylander Iii, H.

Saidi, A.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Salama, G.

G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321(6070), 579–585 (1986).
[Crossref] [PubMed]

Salzberg, B. M.

L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
[Crossref] [PubMed]

Sampson, D. D.

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

Sarunic, M.

Satake, H.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Sattmann, H.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Schleinkofer, L.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Schmoll, T.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
[Crossref] [PubMed]

Scholvin, J.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Schooley, D. A.

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Schreiter, E. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Schubert, E. D.

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seung, H. S.

Shigetomi, E.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Shinoda, K.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

Šimo, L.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Sivaprakasam, A.

T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
[PubMed]

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref] [PubMed]

Spira, M. E.

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, C.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Sun, X. R.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Sun, Y.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Svoboda, K.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szu, J. I.

Takagi, R.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Tanaka, Y.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Tanifuji, M.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

Tank, D. W.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

Tasaki, I.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Tearney, G.

Thesen, T.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Tian, L.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Tsubota, K.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

Tsunoda, K.

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

Tsytsarev, V.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Tumlinson, A. R.

Unterhuber, A.

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Utzinger, U.

van Zijl, P. C.

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

Villringer, A.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Wang, B.

B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
[Crossref] [PubMed]

Wang, L. V.

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Wang, S. S.

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Wang, Y.

Wardill, T. J.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

Wojtkowski, M.

Yang, C.

Yao, X.

B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
[Crossref] [PubMed]

Yazdanfar, S.

Yeh, Y.-J.

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

Yoon, Y. G.

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Yun, S.-H.

Zecevic, D.

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Zhang, J.

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

Zhang, Y.

Žitnan, D.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

Zitnanová, I.

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

L. B. Cohen, B. M. Salzberg, and A. Grinvald, “Optical methods for monitoring neuron activity,” Annu. Rev. Neurosci. 1(1), 171–182 (1978).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biophys. J. (1)

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[Crossref] [PubMed]

BMC Neurosci. (1)

C. Moore-Kochlacs, J. Scholvin, J. P. Kinney, J. G. Bernstein, Y. G. Yoon, S. K. Arfin, N. Kopell, and E. S. Boyden, “Principles of high–fidelity, high–density 3–d neural recording,” BMC Neurosci. 15(1), 1 (2014).
[PubMed]

Curr. Biol. (1)

Y.-J. Kim, D. Žitňan, C. G. Galizia, K.-H. Cho, and M. E. Adams, “A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles,” Curr. Biol. 16(14), 1395–1407 (2006).
[Crossref] [PubMed]

Exp. Neurobiol. (1)

S. A. Kim and S. B. Jun, “In-vivo Optical Measurement of Neural Activity in the Brain,” Exp. Neurobiol. 22(3), 158–166 (2013).
[Crossref] [PubMed]

Front. Neuroenergetics (1)

T. Akkin, D. Landowne, and A. Sivaprakasam, “Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes,” Front. Neuroenergetics 2, 22 (2010).
[PubMed]

Gen. Comp. Endocrinol. (1)

D. Žitňan, Y.-J. Kim, I. Zitnanová, L. Roller, and M. E. Adams, “Complex steroid-peptide-receptor cascade controls insect ecdysis,” Gen. Comp. Endocrinol. 153(1-3), 88–96 (2007).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

G. Hanazono, K. Tsunoda, K. Shinoda, K. Tsubota, Y. Miyake, and M. Tanifuji, “Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins,” Invest. Ophthalmol. Vis. Sci. 48(6), 2903–2912 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt. 15(4), 041513 (2010).
[Crossref] [PubMed]

A. Akhlagh Moayed, S. Hariri, V. Choh, and K. Bizheva, “Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system,” J. Biomed. Opt. 17(1), 016011 (2012).
[Crossref] [PubMed]

B. Wang, Y. Lu, and X. Yao, “In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas,” J. Biomed. Opt. 21(9), 096010 (2016).
[Crossref] [PubMed]

S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, and Z. Chen, “Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt. 17(7), 070501 (2012).
[Crossref] [PubMed]

B. T. Amaechi, A. Podoleanu, S. M. Higham, and D. A. Jackson, “Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries,” J. Biomed. Opt. 8(4), 642–647 (2003).
[Crossref] [PubMed]

J. Membr. Biol. (1)

T. Akkin, D. Landowne, and A. Sivaprakasam, “Optical coherence tomography phase measurement of transient changes in squid giant axons during activity,” J. Membr. Biol. 231(1), 35–46 (2009).
[Crossref] [PubMed]

J. Neurosci. (1)

J. Akerboom, T. W. Chen, T. J. Wardill, L. Tian, J. S. Marvin, S. Mutlu, N. C. Calderón, F. Esposti, B. G. Borghuis, X. R. Sun, A. Gordus, M. B. Orger, R. Portugues, F. Engert, J. J. Macklin, A. Filosa, A. Aggarwal, R. A. Kerr, R. Takagi, S. Kracun, E. Shigetomi, B. S. Khakh, H. Baier, L. Lagnado, S. S. Wang, C. I. Bargmann, B. E. Kimmel, V. Jayaraman, K. Svoboda, D. S. Kim, E. R. Schreiter, and L. L. Looger, “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci. 32(40), 13819–13840 (2012).
[Crossref] [PubMed]

J. Neurosci. Methods (3)

C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods 187(2), 171–182 (2010).
[Crossref] [PubMed]

V. Tsytsarev, B. Rao, K. I. Maslov, L. Li, and L. V. Wang, “Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts,” J. Neurosci. Methods 216(2), 142–145 (2013).
[Crossref] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[Crossref] [PubMed]

J. Physiol. (2)

D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108(3), 278–281 (1949).
[Crossref]

D. K. Hill, “The volume change resulting from stimulation of a giant nerve fibre,” J. Physiol. 111(3-4), 304–327 (1950).
[Crossref] [PubMed]

Nat. Commun. (1)

W. C. Lemon, S. R. Pulver, B. Höckendorf, K. McDole, K. Branson, J. Freeman, and P. J. Keller, “Whole-central nervous system functional imaging in larval Drosophila,” Nat. Commun. 6, 7924 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Nat. Neurosci. (1)

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G. G. Malliaras, and G. Buzsáki, “NeuroGrid: recording action potentials from the surface of the brain,” Nat. Neurosci. 18(2), 310–315 (2014).
[Crossref] [PubMed]

Nature (3)

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular organization in monkey striate cortex,” Nature 321(6070), 579–585 (1986).
[Crossref] [PubMed]

Neurophotonics (1)

Y.-J. Yeh, A. J. Black, D. Landowne, and T. Akkin, “Optical coherence tomography for cross-sectional imaging of neural activity,” Neurophotonics 2(3), 035001 (2015).
[Crossref] [PubMed]

Neurosci. Lett. (1)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154(1-2), 101–104 (1993).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (7)

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004).
[Crossref] [PubMed]

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
[Crossref] [PubMed]

D. Lorenser, B. C. Quirk, M. Auger, W.-J. Madore, R. W. Kirk, N. Godbout, D. D. Sampson, C. Boudoux, and R. A. McLaughlin, “Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography,” Opt. Lett. 38(3), 266–268 (2013).
[Crossref] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[Crossref] [PubMed]

A. A. Moayed, S. Hariri, V. Choh, and K. Bizheva, “In vivo imaging of intrinsic optical signals in chicken retina with functional optical coherence tomography,” Opt. Lett. 36(23), 4575–4577 (2011).
[Crossref] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006).
[Crossref] [PubMed]

U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007).
[Crossref] [PubMed]

Peptides (1)

L. Roller, I. Zitnanová, L. Dai, L. Šimo, Y. Park, H. Satake, Y. Tanaka, M. E. Adams, and D. Žitňan, “Ecdysis triggering hormone signaling in arthropods,” Peptides 31(3), 429–441 (2010).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

R. Homma, B. J. Baker, L. Jin, O. Garaschuk, A. Konnerth, L. B. Cohen, and D. Zecevic, “Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1529), 2453–2467 (2009).
[Crossref] [PubMed]

Physiol. Rev. (1)

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

PLoS Genet. (1)

D.-H. Kim, M.-R. Han, G. Lee, S. S. Lee, Y.-J. Kim, and M. E. Adams, “Rescheduling behavioral subunits of a fixed action pattern by genetic manipulation of peptidergic signaling,” PLoS Genet. 11(9), e1005513 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

Y.-J. Kim, D. Žitňan, K.-H. Cho, D. A. Schooley, A. Mizoguchi, and M. E. Adams, “Central peptidergic ensembles associated with organization of an innate behavior,” Proc. Natl. Acad. Sci. U.S.A. 103(38), 14211–14216 (2006).
[Crossref] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[Crossref] [PubMed]

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. U.S.A. 87(24), 9868–9872 (1990).
[Crossref] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[Crossref] [PubMed]

Science (3)

C. T. Moonen, P. C. van Zijl, J. A. Frank, D. Le Bihan, and E. D. Becker, “Functional magnetic resonance imaging in medicine and physiology,” Science 250(4977), 53–61 (1990).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

B. C. Hill, E. D. Schubert, M. A. Nokes, and R. P. Michelson, “Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential,” Science 196(4288), 426–428 (1977).
[Crossref] [PubMed]

Other (1)

Fujimoto, J.G., I. Gorczyńska, J.A. Izatt, J. Wyszkowska, D. Bukowska, V.V. Tuchin, D. Ruminski, K. Karnowski, M. Stankiewicz, and M. Wojtkowski, OCT detection of neural activity in American cockroach nervous system.8571 85711V (2013).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (11806 KB)      revised version of supplemental video for Figure 6

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the combined fluorescence and OCT imaging system. bl: broadband laser; g: galvo scanners; d1, d2: dichroic filters; f1, f2: wavelength filters; hs: halogen light source; obj: objective; m: mirror; dg: diffraction grating; lsc: line scan camera. Inset: a more detailed illustration of the experimental preparation for phase-resolved measurements.

Fig. 2
Fig. 2

Co-registered images (150 x 100 µm) of a Group 6, Element 1 of a USAF-1951 resolution target acquired from the fluorescence (blue) and OCT (red) imaging systems.

Fig. 3
Fig. 3

Measurements of the standard deviation of the phase difference between the front and back surfaces of a coverslip at various settings of a neutral density filter. The standard deviations are plotted using the composite SNR expression given in Eq. (2). The line indicates the SNR-limited phase noise floor.

Fig. 4
Fig. 4

(a) Fluorescence image of the Drosophila pre-pupal CNS, with the OCT scanning region marked by the red box and the neuron of interest circled. Scale bar is 100 µm. (b, c) Normalized fluorescence and OCT intensity of the neuron in (a) following exposure of the CNS to 150 nM ETH. The black arrow indicates the starting time of ETH application. (d, e, f) Images and plots from a second experiment following exposure to 600 nM ETH. Gaps correspond to the time required to introduce ETH into the solution and re-focus the imaging system on the sample. (g) Scatterplot of normalized OCT and fluorescence intensities acquired prior to ETH presentation (red) and for 10 minutes following the first fluorescence peak (black) for both experiments.

Fig. 5
Fig. 5

Scatterplots of the standard deviation of phase differences acquired from Drosophila CNS versus composite SNR before ETH presentation (left) and during the period of neural activity (right) are shown with blue circles. The standard deviations after removal of phase fluctuations are indicated with red crosses.

Fig. 6
Fig. 6

Fluorescence images (left) and depth-resolved phase difference traces (right, 1 s duration) prior to ETH application and during neural activity. Phase-resolved OCT data was acquired from the neuron indicated with the red circle. (Visualization 1)

Fig. 7
Fig. 7

Time-resolved plots of the average SNR, summation of the squared phase fluctuations, the number of phase fluctuations, and fluorescence intensity from a neuron. ETH was applied at 600 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ Δϕ = 1 2SNR( z 1 ,t ) + 1 2SNR( z 2 ,t ) .
SNR= 2SNR( z 1 ,t )SNR( z 2 ,t ) SNR( z 1 ,t )+SNR( z 2 ,t )
Δϕ( z,t )=ϕ( z,t )ϕ( z2,t )
Δ ϕ ( z, t i )=Δϕ( z, t i ) 1 N j=N/2 N/2 Δϕ( z, t ij ) ,

Metrics