Abstract

En face coherence microscopy or flying spot or full field optical coherence tomography or microscopy (FF-OCT/FF-OCM) belongs to the OCT family because the sectioning ability is mostly linked to the source coherence length. In this article we will focus our attention on the advantages and the drawbacks of the following approaches: en face versus B scan tomography in terms of resolution, coherent versus incoherent illumination and influence of aberrations, and scanning versus full field imaging. We then show some examples to illustrate the diverse applications of en face coherent microscopy and show that endogenous or exogenous contrasts can add valuable information to the standard morphological image. To conclude we discuss a few domains that appear promising for future development of en face coherence microscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
En face imaging of single cell layers by differential phase-contrast optical coherence microscopy

Markus Sticker, Michael Pircher, Erich Götzinger, Harald Sattmann, Adolf F. Fercher, and Christoph K. Hitzenberger
Opt. Lett. 27(13) 1126-1128 (2002)

En-face scanning optical coherence tomography with ultra-high resolution for material investigation

Karin Wiesauer, Michael Pircher, Erich Götzinger, Siegfried Bauer, Rainer Engelke, Gisela Ahrens, Gabi Grützner, Christoph K. Hitzenberger, and David Stifter
Opt. Express 13(3) 1015-1024 (2005)

Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy

David Merino, Chris Dainty, Adrian Bradu, and Adrian Gh. Podoleanu
Opt. Express 14(8) 3345-3353 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. P. Abbott, R. Abbott, F. Acernese, Group Author(s): LIGO Sci Collaboration; Virgo Collaboration. An upper limit of the stochastic gravitational-wave background of cosmological origin. Nature; Volume: 460 Issue: 7258 Pages: 990–994 Published: AUG 20 2009.
  2. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref] [PubMed]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref] [PubMed]
  4. Optical Coherence Tomography Technology and Applications Editors W Drexler, and J.G Fujimoto (Online).
  5. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
  6. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [Crossref] [PubMed]
  7. Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications; Arnaud Dubois editor. Pan Stanford 2016.
  8. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
    [Crossref] [PubMed]
  9. L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12(26), 6632–6641 (2004).
    [Crossref] [PubMed]
  10. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44(8), 1387–1392 (2005).
    [Crossref] [PubMed]
  11. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
    [Crossref] [PubMed]
  12. M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
    [Crossref] [PubMed]
  13. John Holmes and Julia Welzel; OCT in Dermatology chapter 73 of reference 4.
  14. https://vivosight.com/about-us/product/
  15. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [Crossref] [PubMed]
  16. R. A Leitgeb, T. Lasser, and M. Villiger; OCM with Engineered Wavefront; chapter 29 of ref. 4.
  17. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  18. Adolf F. Fercher; Inverse Scattering and Aperture Synthesis in OCT; chapter 4 of reference 4.
  19. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
    [Crossref] [PubMed]
  20. Y.-Z. Liu, D. N. Shemonski, S. G Adie, A Ahmad, A. J Bower, P. S. Carney, and S. A Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988 (2014).
    [Crossref]
  21. N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref] [PubMed]
  22. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [Crossref] [PubMed]
  23. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  24. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  25. A. Podoleanu, J. Rogers, D. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express 7(9), 292–298 (2000).
    [Crossref] [PubMed]
  26. A. D. Aguirre, C. Zhou, H. C. Lee, O. O. Ahsen, and J. G. Fujimoto, Optical Coherence Microscopy. Chapter 28 of reference 4.
  27. R. B. Rosen, P. Garcia, A. G. Podoleanu, R. Cucu, G. Dobre, I. Trifanov, M. E. J. V. Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, and R. Weitz; En-face Flying Spot OCT/Ophthalmoscope. Chapter 59 of Reference 4.
  28. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
    [Crossref]
  29. W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, Ultrahigh Resolution Optical Coherence Tomography, Chapter 9 of Reference 4.
  30. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
    [Crossref] [PubMed]
  31. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)
  32. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
    [Crossref] [PubMed]
  33. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990).
    [Crossref] [PubMed]
  34. http://www.lltechimaging.com/category/news-press/news-list/
  35. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5702
  36. K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
    [Crossref] [PubMed]
  37. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
    [Crossref] [PubMed]
  38. High resolution in-vivo imaging of skin with full-field optical coherence tomography, Dalimier, E Proceedings of SPIE 8926–89260P (2014).
  39. D. D. Nolte, K. Jeong, J. Turek, and P. M. W. French, Holographic Optical Coherence Imaging Chapter 30 of reference 4.
  40. C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
    [Crossref]
  41. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [Crossref] [PubMed]
  42. D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
    [Crossref]
  43. H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
    [Crossref] [PubMed]
  44. M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).
  45. E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
    [Crossref] [PubMed]
  46. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  47. Robert J. Zawadzki and D. T. Miller. Retinal AO OCT in Chapter 61 of Reference 4.
  48. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
    [Crossref] [PubMed]
  49. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
    [Crossref] [PubMed]
  50. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  51. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref] [PubMed]
  52. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [Crossref] [PubMed]
  53. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
    [Crossref] [PubMed]
  54. P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
    [Crossref] [PubMed]
  55. P. Xiao, M. Fink, and A. C. Boccara, “Adaptive optics full-field optical coherence tomography,” J. Biomed. Opt. 21(12), 121505 (2016).
    [Crossref] [PubMed]
  56. Zhongping Chen and Shuo Tang Second Harmonic OCT and Combined MPM/OCT chapter 49 of reference 4.
  57. A. S. Nam, B. Vakoc, D. Blauvelt, and I. C. Calero ; Optical Coherence Tomography in Cancer Imaging Chapter 45 of reference 4.
  58. Chao Zhou, David W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto and J. L. Connolly, Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues. Cancer Res; 70 (24) December 15, 2010.
  59. Eugenie Dalimier, Osnath Assayag, Fabrice Harms, and A. Claude Boccara; Assessment of Breast, Brain and Skin Pathological Tissue Using Full Field OCM Chapter 26 of reference 4.
  60. http://www.lltechimaging.com/image-gallery/clinical-applications/
  61. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).
  62. I. T. A. Peters, P. L. Stegehuis, R. Peek, F. L. Boer, E. W. V. Zwet, J. Eggermont, J. R. Westphal, P. J. K. Kuppen, J. B. M. Z. Trimbos, C. G. J. M. Hilders, B. P. F. Lelieveldt, C. J. H. V. de Velde, T. Bosse, J. Dijkstra, A. L. Vahrmeijer, Clinical Cancer Research: Non-invasive detection of metastases and follicle density in ovarian tissue using full-field optical coherence tomography clincanres-0288, May 2016.
  63. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [Crossref] [PubMed]
  64. K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
    [Crossref] [PubMed]
  65. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
    [Crossref] [PubMed]
  66. D. Stifter Nondestructive Material Testing Using OCT. Chapter 83 of Reference 4.
  67. L. Vabre, V. Loriette, A. Dubois, J. Moreau, and A.C Boccara, “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27(21), 1899–1901 (2002).
  68. L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).
  69. L. N. Darlow and J. Connan, “Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction,” ELECTIM 24, 063014 (2015).
  70. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  71. M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
    [Crossref]
  72. E. Auksorius and A. C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomed. Opt. Express 6(11), 4465–4471 (2015).
    [Crossref] [PubMed]
  73. P. Targowski, M. Iwanicka, B. J. Rouba, and C. Frosini, OCT for Examination of Artwork chapter 82 of ref. 4.
  74. http://www.oct4art.eu/
  75. Science for conservation of cultural heritage French-Japanese workshop Michel Menu, Nobuyuki Kamba editor. Herman 2012.
  76. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
    [Crossref] [PubMed]
  77. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [Crossref] [PubMed]
  78. J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
    [Crossref] [PubMed]
  79. H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express 2(3), 634–644 (2011).
    [Crossref] [PubMed]
  80. J. Mavadia-Shukla, J. F. Xi, and X. D. Li, Multi-modal endoscopy: OCT and fluorescence. Optical Coherence Tomography: Technology and Applications, 1599–1613. Springer International Publishing. (2015).
  81. J. K. Barton, A. R. Tumlinson, and U. Utzinger, Chapter 53 of Referenec 4.
  82. Integrated Optical Coherence Tomography (OCT) with Fluorescence Laminar Optical Tomography (FLOT) Chao-Wei Chen and Yu Chen Chapter 51 of Referenec 4.
  83. Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
    [Crossref] [PubMed]
  84. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
    [Crossref] [PubMed]
  85. L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
    [PubMed]
  86. S. Yuan and Y. Chen, Combining Optical Coherence Tomography with Fluorescence Imaging, Advances in Lasers and Electro Optics, Nelson Costa and Adolfo Cartaxo (Ed.), InTech (2010).
  87. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
    [Crossref] [PubMed]
  88. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
    [Crossref] [PubMed]
  89. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-Modality Fluorescence and Full-Field Optical Coherence Microscopy for Biomedical Imaging Applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
    [Crossref] [PubMed]
  90. F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
    [Crossref]
  91. H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and A. Dubois, “Simultaneous Optically Sectioned Fluorescence and Optical Coherence Microscopy with Full-Field Illumination,” Opt. Lett. 37(10), 1613–1615 (2012).
    [Crossref] [PubMed]
  92. O.Thouvenin, M.Fink, C.Boccara, ``Dynamic multimodal full-field optical coherence tomography and fluorescence microscopy,” Under revision.
  93. K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
    [Crossref] [PubMed]
  94. K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
    [Crossref] [PubMed]
  95. A. J Rózsa and R. W Beuerman, “Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit,” Pain 14, 105–120 (1982).
  96. C.-J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
    [PubMed]
  97. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [Crossref] [PubMed]
  98. “J Binding, J. B Arous, J. F Léger, S Gigan, C. Boccara, and L Bourdieu, “Brain refractive index measured in vivowith high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
    [Crossref] [PubMed]
  99. C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
    [Crossref] [PubMed]
  100. F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
    [Crossref] [PubMed]
  101. K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
    [Crossref]
  102. D. D. Nolte, R. An, and J. Turek, Motility Contrast Imaging and TissueDynamics Spectroscopy chapter 37 of reference 4.
  103. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
    [Crossref] [PubMed]
  104. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
    [Crossref] [PubMed]
  105. M. A. Choma, A. Ellerbee, and J. A. Izatt, Ultrasensitive Phase-Resolved Imaging of Cellular Morphology and Dynamics Chapter 40 of reference 4.
  106. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
    [Crossref] [PubMed]
  107. C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501–4513 (2016).
    [Crossref] [PubMed]
  108. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [Crossref] [PubMed]
  109. R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
    [Crossref] [PubMed]
  110. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
    [Crossref] [PubMed]
  111. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [Crossref]
  112. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [Crossref]
  113. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [Crossref] [PubMed]
  114. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref] [PubMed]
  115. B. F. Kennedy, K. M. Kennedy, A. L. Oldenburg, S. G. Adie, S. A. Boppart, and D. D. Sampson, Optical Coherence Elastography Chapter 32 of reference 4.
  116. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4, 2138–2149 (2013).
  117. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
    [Crossref] [PubMed]
  118. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
    [Crossref] [PubMed]
  119. C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
    [Crossref] [PubMed]
  120. C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
    [Crossref] [PubMed]
  121. S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
    [Crossref] [PubMed]
  122. A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
    [Crossref] [PubMed]
  123. Y. Zhao, Y. Yang, R. K. Wang, and S. A. Boppart, Optical Coherence Tomographyin Tissue Engineering Chapter 64 of referenence 4.
  124. A. Nahas, M. Varna, E. Fort, and A. C. Boccara, “Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection,” Biomed. Opt. Express 5(10), 3541–3546 (2014).
    [Crossref] [PubMed]
  125. J. A. Izatt, M. A. Choma, and A. H. Dhalla, Theory of Optical Coherence Tomography Chapter 2 of Reference 4.
  126. P. E. Andersen, T. M. Jørgensen, L. Thrane, A. Tycho, and H. T. Yura, Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems Chapter 3 of Refence 4.
  127. J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
    [Crossref] [PubMed]
  128. A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
    [Crossref]
  129. A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Wave Random Complex 20(3), 333–363 (2010).
    [Crossref]
  130. A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
    [Crossref] [PubMed]

2016 (8)

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Adaptive optics full-field optical coherence tomography,” J. Biomed. Opt. 21(12), 121505 (2016).
[Crossref] [PubMed]

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501–4513 (2016).
[Crossref] [PubMed]

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

2015 (7)

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

L. N. Darlow and J. Connan, “Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction,” ELECTIM 24, 063014 (2015).

E. Auksorius and A. C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomed. Opt. Express 6(11), 4465–4471 (2015).
[Crossref] [PubMed]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (6)

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4, 2138–2149 (2013).

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

2012 (7)

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref] [PubMed]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-Modality Fluorescence and Full-Field Optical Coherence Microscopy for Biomedical Imaging Applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and A. Dubois, “Simultaneous Optically Sectioned Fluorescence and Optical Coherence Microscopy with Full-Field Illumination,” Opt. Lett. 37(10), 1613–1615 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (5)

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Wave Random Complex 20(3), 333–363 (2010).
[Crossref]

2009 (4)

2008 (4)

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

2007 (3)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

2006 (9)

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[Crossref] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

2005 (8)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
[Crossref] [PubMed]

B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
[Crossref] [PubMed]

B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[Crossref] [PubMed]

Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44(8), 1387–1392 (2005).
[Crossref] [PubMed]

2004 (7)

L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12(26), 6632–6641 (2004).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
[Crossref] [PubMed]

R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (4)

2000 (2)

A. Podoleanu, J. Rogers, D. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express 7(9), 292–298 (2000).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

1999 (1)

1998 (3)

1997 (1)

1994 (1)

1990 (1)

1982 (1)

A. J Rózsa and R. W Beuerman, “Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit,” Pain 14, 105–120 (1982).

Adie, S. G

Adie, S. G.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

Ahmad, A

Ahmad, A.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Ahrens, G.

Akhoury, S. S.

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Akiba, M.

Amblard, F.

An, R.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
[Crossref] [PubMed]

Antoine, M.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Apelian, C.

Aranda, J.

Arous, J. B

Artal, P.

Assayag, O.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Aubry, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Wave Random Complex 20(3), 333–363 (2010).
[Crossref]

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

Auksorius, E.

Badon, A.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

Barton, J. K.

Bastacky, S.

Bauer, M.

Bauer, S.

Beaurepaire, E.

Bertillot, F.

Besselsen, D. G.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

Beuerman, R. W

A. J Rózsa and R. W Beuerman, “Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit,” Pain 14, 105–120 (1982).

Biedermann, B. R.

Binding, J

Birngruber, R.

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Blanchot, L.

Boccara, A. C.

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Adaptive optics full-field optical coherence tomography,” J. Biomed. Opt. 21(12), 121505 (2016).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

E. Auksorius and A. C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomed. Opt. Express 6(11), 4465–4471 (2015).
[Crossref] [PubMed]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

A. Nahas, M. Varna, E. Fort, and A. C. Boccara, “Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection,” Biomed. Opt. Express 5(10), 3541–3546 (2014).
[Crossref] [PubMed]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4, 2138–2149 (2013).

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[Crossref] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref] [PubMed]

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

Boccara, A.C

Boccara, A.-C.

Boccara, C.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

“J Binding, J. B Arous, J. F Léger, S Gigan, C. Boccara, and L Bourdieu, “Brain refractive index measured in vivowith high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

Boppart, S. A

Boppart, S. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Borderie, V. M.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Bouheraoua, N.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. E.

Bourdieu, L

Bourquin, S.

Bower, A. J

Bradu, A.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[Crossref] [PubMed]

Bromberg, Y.

Bruhat, A.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

Budka, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

Burcheri, A.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Bursell, S. E.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Cable, A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Carney, P. S.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Y.-Z. Liu, D. N. Shemonski, S. G Adie, A Ahmad, A. J Bower, P. S. Carney, and S. A Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988 (2014).
[Crossref]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Carvalho, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Cense, B.

Chalut, K. J.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Chan, K. P.

Chan, R.

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Charrière, F.

Chassot, J.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Chau, A.

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Chen, C. W.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Chen, S.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Chen, Y.

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref] [PubMed]

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Chen, Z.

Chim, S. S. C.

Claude Boccara, A.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Clermont, A.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Connan, J.

L. N. Darlow and J. Connan, “Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction,” ELECTIM 24, 063014 (2015).

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Coron, E.

Costello, F.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Coupland, S.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

Cuche, E.

Dainty, C.

Dalimier, E.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

Darlow, L. N.

L. N. Darlow and J. Connan, “Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction,” ELECTIM 24, 063014 (2015).

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Depeursinge, C. D.

Derode, A.

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Wave Random Complex 20(3), 333–363 (2010).
[Crossref]

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

Ding, Z.

Drexler, W

Optical Coherence Tomography Technology and Applications Editors W Drexler, and J.G Fujimoto (Online).

Drexler, W.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Du, C. W.

Dubois, A.

Duker, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Dunne, S.

Dunsby, C.

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Dupuis, G.

Eggenberger, E.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Eigenwillig, C. M.

Engelke, R.

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Fercher, A.F.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

Fernández, E. J.

Finan, J. D.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Fink, M.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Adaptive optics full-field optical coherence tomography,” J. Biomed. Opt. 21(12), 121505 (2016).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref] [PubMed]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

Fort, E.

Fragola, A.

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

Franke, G.

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

French, P. M. W.

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Fujimoto, J. G.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

Fujimoto, J.G

Optical Coherence Tomography Technology and Applications Editors W Drexler, and J.G Fujimoto (Online).

Gao, W.

Georgeon, C.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Gerner, E. W.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

Gerstmann, D. K.

Ghoubay, D.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Giacomelli, M. G.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Gigan, S

Gmitro, A. F.

Goldstein, A. M.

Götzinger, E.

Grieve, K.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

Griffiths, G.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Grützner, G.

Gu, Y.

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Guan, G.

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Guilak, F.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Hariri, L. P.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
[Crossref] [PubMed]

Harms, F.

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

Hayasaka, Y.

Hee, M. R.

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

Hillman, T. R.

Hillmann, D.

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Hinkel, L.

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Hodge, W.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Hojjatoleslami, A.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Huang, Z.

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Huber, R.

Hüttmann, G.

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Hwu, W.-M. W.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Iftimia, N.

Ingram, D. R.

Insana, M. F.

Izatt, J. A.

Jackson, D.

Jeon, C.-J.

C.-J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

Jeong, K.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
[Crossref] [PubMed]

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

Jiang, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Johnstone, M.

Jones, S.

Jonnal, R. S.

Kaazempur-Mofrad, M.

Kamali, T.

Karamata, B.

Kardon, R. H.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Karl, W.

Kazlauskas, A.

Kennedy, B. F.

Khalil, A.

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Khoshki, R. M.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

Kim, H.-S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Kim, M.

Kino, G. S.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Klein, T.

Ko, T. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Koch, P.

Kulkarni, M. D.

Kumar, A.

Lambelet, P.

Larin, K. V.

Lasser, T.

Laubscher, M.

Lazar, A. J.

Le, T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Le Conte de Poly, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Le Gargasson, J.-F.

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

Lebec, M.

Léger, J. F

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Leitgeb, R. A.

Lem, J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Leong, K. W.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Lerosey, G.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

Leroux, C.-E.

Leutenegger, M.

Lev, D. C.

Lévêque-Fort, S.

Li, C.

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Li, D.

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

Li, J.

Li, Q.

Li, X.

Liang, X.

Liu, L.

Liu, Y. Z.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Liu, Y.-Z.

Loriette, V.

Ma, H.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

MacDonald, D. J.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Makhlouf, H.

Manapuram, R. K.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Marquet, P.

Masland, R. H.

C.-J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

Massatsch, P.

Mavadia, J.

Mayorga-Cruz, D.

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

McLaughlin, R. A.

Meadway, A.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Melloch, M. R.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Menodiado, F. M.

Merino, D.

Mertz, J.

Meyers, S.

Miller, D. T.

Mofrad, M. R. K.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Moreau, J.

Moreaux, L.

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Motiejunaite, R.

Mouslim, K.

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

Munro, I.

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Münst, M.

Myaing, M. T.

Nadkarni, S.

Nahas, A.

Nasiri-Avanaki, M.-R.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

Nelson, J. S.

Nguyen, T.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Nolte, D. D.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
[Crossref] [PubMed]

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

Oh, W. Y.

Olivier, S.

Orescanin, M.

Owen, G. M.

Pache, C.

Pan, Y. I.

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Pan, Y. T.

Paques, M.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

Perronet, K.

Pieretti, A.

Pircher, M.

Platzer, R.

Podoleanu, A.

Podoleanu, A. G.

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[Crossref] [PubMed]

Pollock, R. E.

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Preusser, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

Prieto, P. M.

Quirk, B. C.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Reif, R.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Reinholz, F.

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Ren, H.

Rha, J.

Riben, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Robert, J.-L.

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

Rogers, J.

Roney, C. A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Rouse, A. R.

Roux, S.

Rózsa, A. J

A. J Rózsa and R. W Beuerman, “Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit,” Pain 14, 105–120 (1982).

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Sahel, J.

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

Saint-Jalmes, H.

Salathé, R. P.

Sampson, D. D.

Sarunic, M. V.

Sato, M.

Sattmann, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Schmitt, J.

Schuman, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Sengupta, A.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

Shemonski, D. N.

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

Shishkov, M.

Sigal-Zafrani, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Simonutti, M.

Song, Q. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

South, F. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Spahr, H.

Srinivasan, V. J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

Stifter, D.

Stingl, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

Strettoi, E.

C.-J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

Sudkamp, H.

Summers, R. M.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Swanson, E. A.

Tanno, N.

Tanter, M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

Thouvenin, O.

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501–4513 (2016).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Tim, B. P. K.

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Toohey, K. S.

Tumlinson, A. R.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
[Crossref] [PubMed]

Turek, J.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
[Crossref] [PubMed]

Turek, J. J.

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

Twa, M. D.

Unterhuber, A.

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

Utzinger, U.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004).
[Crossref] [PubMed]

Vabre, L.

Varna, M.

Vermeulen, P.

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

Villiger, M.

Wade, N. H.

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

Wang, R. K.

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Wang, S.

Watanabe, Y.

Wax, A.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Weinberg, S.

Welch, A. J.

Werner, J. S.

Wierwille, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Wiesauer, K.

Wieser, W.

Wojtkowski, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

Xi, J.

Xiao, P.

Xie, T. Q.

Xu, B.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Yazdanfar, S.

Yelin, R.

Yu, L.

Yuan, S.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

Yun, S. H.

Zawadzki, R. J.

Zeidel, M. L.

Zhang, Y.

Zhao, Y.

Ann. Biomed. Eng. (1)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. K. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[Crossref]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[Crossref]

Biomed. Opt. Express (11)

C.-E. Leroux, F. Bertillot, O. Thouvenin, and A.-C. Boccara, “Intracellular dynamics measurements with full field optical coherence tomography suggest hindering effect of actomyosin contractility on organelle transport,” Biomed. Opt. Express 7(11), 4501–4513 (2016).
[Crossref] [PubMed]

C. Apelian, F. Harms, O. Thouvenin, and A. C. Boccara, “Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis,” Biomed. Opt. Express 7(4), 1511–1524 (2016).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

J. Mavadia, J. Xi, Y. Chen, and X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012).
[Crossref] [PubMed]

H. Makhlouf, A. R. Rouse, and A. F. Gmitro, “Dual modality fluorescence confocal and spectral-domain optical coherence tomography microendoscope,” Biomed. Opt. Express 2(3), 634–644 (2011).
[Crossref] [PubMed]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-Modality Fluorescence and Full-Field Optical Coherence Microscopy for Biomedical Imaging Applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using Full Field OCT,” Biomed. Opt. Express 4, 2138–2149 (2013).

A. Nahas, M. Varna, E. Fort, and A. C. Boccara, “Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection,” Biomed. Opt. Express 5(10), 3541–3546 (2014).
[Crossref] [PubMed]

E. Auksorius and A. C. Boccara, “Fingerprint imaging from the inside of a finger with full-field optical coherence tomography,” Biomed. Opt. Express 6(11), 4465–4471 (2015).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

Y.-Z. Liu, D. N. Shemonski, S. G Adie, A Ahmad, A. J Bower, P. S. Carney, and S. A Boppart, “Computed optical interferometric tomography for high-speed volumetric cellular imaging,” Biomed. Opt. Express 5(9), 2988 (2014).
[Crossref]

Biophys. J. (1)

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[Crossref] [PubMed]

Comp. Med. (1)

L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, “Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract,” Comp. Med. 57(2), 175–185 (2007).
[PubMed]

ELECTIM (2)

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

L. N. Darlow and J. Connan, “Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction,” ELECTIM 24, 063014 (2015).

Exp. Eye Res. (1)

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

K. Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT96 (2016).
[Crossref] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[Crossref] [PubMed]

K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, “Ocular Tissue Imaging Using Ultrahigh-Resolution, Full-Field Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 45(11), 4126–4131 (2004).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

J.-L. Robert and M. Fink, “Green’s function estimation in speckle using the decomposition of the time reversal operator: application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123(2), 866–877 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. Aubry and A. Derode, “Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration,” J. Appl. Phys. 106(4), 044903 (2009).
[Crossref]

J. Biomed. Opt. (5)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, and T. Le, “Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 11006 (2005)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9(4), 719–724 (2004).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Adaptive optics full-field optical coherence tomography,” J. Biomed. Opt. 21(12), 121505 (2016).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic Optical Coherence Elastography: a Review,” J. Innov. Opt. Health Sci. 3(4), 221–233 (2010).
[Crossref] [PubMed]

J. Lab. Autom. (1)

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening,” J. Lab. Autom. 16(6), 431–442 (2011).
[Crossref] [PubMed]

J. Neurosci. (1)

C.-J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. R. Melloch, “High-speed wide-field coherence-gated imaging via photorefractive holography withphotorefractive multiple quantum well devices,” J. Opt. A, Pure Appl. Opt. 5(6), S448–S456 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

J. R. Soc. Interface (1)

C. Li, G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography,” J. R. Soc. Interface 9(70), 831–841 (2012).
[Crossref] [PubMed]

Mult. Scler. (1)

F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Mult. Scler. 14(7), 893–905 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[Crossref] [PubMed]

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185(1-3), 57–64 (2000).
[Crossref]

K. Jeong, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Functional imaging in photorefractive tissue speckle holography,” Opt. Commun. 281(7), 1860–1869 (2008).
[Crossref]

Opt. Express (15)

“J Binding, J. B Arous, J. F Léger, S Gigan, C. Boccara, and L Bourdieu, “Brain refractive index measured in vivowith high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19, 4833–4847 (2011).
[Crossref] [PubMed]

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[Crossref] [PubMed]

R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[Crossref] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[Crossref] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Podoleanu, J. Rogers, D. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin,” Opt. Express 7(9), 292–298 (2000).
[Crossref] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[Crossref] [PubMed]

L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12(26), 6632–6641 (2004).
[Crossref] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005).
[Crossref] [PubMed]

Opt. Lett. (22)

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999).
[Crossref] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[Crossref] [PubMed]

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

M. Villiger, C. Pache, and T. Lasser, “Dark-field optical coherence microscopy,” Opt. Lett. 35(20), 3489–3491 (2010).

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[Crossref] [PubMed]

P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations,” Opt. Lett. 41(17), 3920–3923 (2016).
[Crossref] [PubMed]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
[Crossref] [PubMed]

M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003).
[Crossref] [PubMed]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[Crossref] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[Crossref] [PubMed]

H. Makhlouf, K. Perronet, G. Dupuis, S. Lévêque-Fort, and A. Dubois, “Simultaneous Optically Sectioned Fluorescence and Optical Coherence Microscopy with Full-Field Illumination,” Opt. Lett. 37(10), 1613–1615 (2012).
[Crossref] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[Crossref] [PubMed]

L. Vabre, V. Loriette, A. Dubois, J. Moreau, and A.C Boccara, “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27(21), 1899–1901 (2002).

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel, “Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography,” Opt. Lett. 28(24), 2485–2487 (2003).
[Crossref] [PubMed]

C. Li, G. Guan, Z. Huang, M. Johnstone, and R. K. Wang, “Noncontact all-optical measurement of corneal elasticity,” Opt. Lett. 37(10), 1625–1627 (2012).
[Crossref] [PubMed]

S. Wang, J. Li, R. K. Manapuram, F. M. Menodiado, D. R. Ingram, M. D. Twa, A. J. Lazar, D. C. Lev, R. E. Pollock, and K. V. Larin, “Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system,” Opt. Lett. 37(24), 5184–5186 (2012).
[Crossref] [PubMed]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[Crossref] [PubMed]

Opt. Photonics J. (1)

M.-R. Nasiri-Avanaki, A. Meadway, A. Bradu, R. M. Khoshki, A. Hojjatoleslami, and A. G. Podoleanu, “Anti-spoof reliable biometry of fingerprints using en-face optical coherence tomography,” Opt. Photonics J. 1(03), 91–96 (2011).
[Crossref]

Pain (1)

A. J Rózsa and R. W Beuerman, “Density and Organization of Free Nerve Endings in the Corneal Epithelium of the Rabbit,” Pain 14, 105–120 (1982).

Phys. Med. Biol. (1)

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Xu, G. Griffiths, J. Jiang, H. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Hillmann, G. Franke, L. Hinkel, B. P. K. Tim, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Sci. Adv. (1)

A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep imaging through highly scattering media,” Sci. Adv. 2(11), e1600370 (2016).
[Crossref] [PubMed]

TCRT: Express (1)

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, K. Grieve, E. Dalimier, B. Le Conte de Poly, and C. Boccara, “Large field, high resolution full field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technology in cancer research and treatment,” TCRT: Express 1(1), 21–34 (2013).

Technol. Cancer Res. Treat. (1)

K. Grieve, K. Mouslim, O. Assayag, E. Dalimier, F. Harms, A. Bruhat, C. Boccara, and M. Antoine, “Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography,” Technol. Cancer Res. Treat. 15(2), 266–274 (2016).
[Crossref] [PubMed]

Wave Random Complex (1)

A. Aubry and A. Derode, “Singular value distribution of the propagation matrix in random scattering media,” Wave Random Complex 20(3), 333–363 (2010).
[Crossref]

Other (37)

J. A. Izatt, M. A. Choma, and A. H. Dhalla, Theory of Optical Coherence Tomography Chapter 2 of Reference 4.

P. E. Andersen, T. M. Jørgensen, L. Thrane, A. Tycho, and H. T. Yura, Modeling Light–Tissue Interaction in Optical Coherence Tomography Systems Chapter 3 of Refence 4.

Y. Zhao, Y. Yang, R. K. Wang, and S. A. Boppart, Optical Coherence Tomographyin Tissue Engineering Chapter 64 of referenence 4.

F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, and A. C. Boccara, ``Multimodal Full-Field Optical Coherence Tomography on biological tissue: toward all optical digital pathology,” Proc. SPIE BiOS, 821609 (2012).
[Crossref]

O.Thouvenin, M.Fink, C.Boccara, ``Dynamic multimodal full-field optical coherence tomography and fluorescence microscopy,” Under revision.

S. Yuan and Y. Chen, Combining Optical Coherence Tomography with Fluorescence Imaging, Advances in Lasers and Electro Optics, Nelson Costa and Adolfo Cartaxo (Ed.), InTech (2010).

J. Mavadia-Shukla, J. F. Xi, and X. D. Li, Multi-modal endoscopy: OCT and fluorescence. Optical Coherence Tomography: Technology and Applications, 1599–1613. Springer International Publishing. (2015).

J. K. Barton, A. R. Tumlinson, and U. Utzinger, Chapter 53 of Referenec 4.

Integrated Optical Coherence Tomography (OCT) with Fluorescence Laminar Optical Tomography (FLOT) Chao-Wei Chen and Yu Chen Chapter 51 of Referenec 4.

M. A. Choma, A. Ellerbee, and J. A. Izatt, Ultrasensitive Phase-Resolved Imaging of Cellular Morphology and Dynamics Chapter 40 of reference 4.

D. D. Nolte, R. An, and J. Turek, Motility Contrast Imaging and TissueDynamics Spectroscopy chapter 37 of reference 4.

B. F. Kennedy, K. M. Kennedy, A. L. Oldenburg, S. G. Adie, S. A. Boppart, and D. D. Sampson, Optical Coherence Elastography Chapter 32 of reference 4.

I. T. A. Peters, P. L. Stegehuis, R. Peek, F. L. Boer, E. W. V. Zwet, J. Eggermont, J. R. Westphal, P. J. K. Kuppen, J. B. M. Z. Trimbos, C. G. J. M. Hilders, B. P. F. Lelieveldt, C. J. H. V. de Velde, T. Bosse, J. Dijkstra, A. L. Vahrmeijer, Clinical Cancer Research: Non-invasive detection of metastases and follicle density in ovarian tissue using full-field optical coherence tomography clincanres-0288, May 2016.

D. Stifter Nondestructive Material Testing Using OCT. Chapter 83 of Reference 4.

P. Targowski, M. Iwanicka, B. J. Rouba, and C. Frosini, OCT for Examination of Artwork chapter 82 of ref. 4.

http://www.oct4art.eu/

Science for conservation of cultural heritage French-Japanese workshop Michel Menu, Nobuyuki Kamba editor. Herman 2012.

Robert J. Zawadzki and D. T. Miller. Retinal AO OCT in Chapter 61 of Reference 4.

Zhongping Chen and Shuo Tang Second Harmonic OCT and Combined MPM/OCT chapter 49 of reference 4.

A. S. Nam, B. Vakoc, D. Blauvelt, and I. C. Calero ; Optical Coherence Tomography in Cancer Imaging Chapter 45 of reference 4.

Chao Zhou, David W. Cohen, Y. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto and J. L. Connolly, Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues. Cancer Res; 70 (24) December 15, 2010.

Eugenie Dalimier, Osnath Assayag, Fabrice Harms, and A. Claude Boccara; Assessment of Breast, Brain and Skin Pathological Tissue Using Full Field OCM Chapter 26 of reference 4.

http://www.lltechimaging.com/image-gallery/clinical-applications/

R. A Leitgeb, T. Lasser, and M. Villiger; OCM with Engineered Wavefront; chapter 29 of ref. 4.

John Holmes and Julia Welzel; OCT in Dermatology chapter 73 of reference 4.

https://vivosight.com/about-us/product/

Adolf F. Fercher; Inverse Scattering and Aperture Synthesis in OCT; chapter 4 of reference 4.

Optical Coherence Tomography Technology and Applications Editors W Drexler, and J.G Fujimoto (Online).

Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications; Arnaud Dubois editor. Pan Stanford 2016.

B. P. Abbott, R. Abbott, F. Acernese, Group Author(s): LIGO Sci Collaboration; Virgo Collaboration. An upper limit of the stochastic gravitational-wave background of cosmological origin. Nature; Volume: 460 Issue: 7258 Pages: 990–994 Published: AUG 20 2009.

High resolution in-vivo imaging of skin with full-field optical coherence tomography, Dalimier, E Proceedings of SPIE 8926–89260P (2014).

D. D. Nolte, K. Jeong, J. Turek, and P. M. W. French, Holographic Optical Coherence Imaging Chapter 30 of reference 4.

http://www.lltechimaging.com/category/news-press/news-list/

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5702

A. D. Aguirre, C. Zhou, H. C. Lee, O. O. Ahsen, and J. G. Fujimoto, Optical Coherence Microscopy. Chapter 28 of reference 4.

R. B. Rosen, P. Garcia, A. G. Podoleanu, R. Cucu, G. Dobre, I. Trifanov, M. E. J. V. Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, and R. Weitz; En-face Flying Spot OCT/Ophthalmoscope. Chapter 59 of Reference 4.

W. Drexler, Y. Chen, A. D. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, Ultrahigh Resolution Optical Coherence Tomography, Chapter 9 of Reference 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

From Differential Interference Contrast (DIC) to FF-OCM. Two similar versions of a polarization interferometer [2] using a photo elastic modulator and a synchronous lock-in detection.

Fig. 2
Fig. 2

OCT principle: A spatially coherent source is focused on the sample with a depth of field corresponding to the depth of the recorded volume.

Fig. 3
Fig. 3

FF-OCM principle using a Linnik interferometer [5]: A spatially incoherent source is focused on the sample. The microscope objective field of view is imaged on the camera. There is no need for an extended depth of field and high numerical aperture objectives can be used. En face flying spot scanning has also been used successfully with a single detector [25–27].

Fig. 4
Fig. 4

The left image is the out of focus direct image of an USAF target. The right image is the same out of focus field obtained using FF-OCM: it clearly appears much less blurred (see text).

Fig. 5
Fig. 5

FF-OCM of Bed bug Tingis auriculata left, and image of the whole bug on the right (field of view 1mm2) fossilized in amber. Credit: Jean-Marie Chassot, Institut Langevin and Romain Garrouste, Muséum National d'Histoire Naturelle Paris.

Fig. 6
Fig. 6

In vivo FF-OCM of internal fingerprint (A) taken a few hundred micrometers below the skin surface and total reflection image of the same external fingerprint (inversed contrast). Credit: Egidijus Auktorius.

Fig. 7
Fig. 7

3-D Full Field OCT of the top of a lacquer pot. 4 layers can be observed here; more than 10 layers can be observed in antique lacquers.

Fig. 8
Fig. 8

Simultaneous FF-OCM and Fluorescence microscopy at different depths in a mouse cornea. The 3 panels show the overlay between the FF-OCM amplitude image and the fluorescence image collected from a nerve specific label in a transgenic mouse line. The 3 panels respectively represent typical images acquired respectively in the epithelium third layer (left), the Bowman’s layer (middle), and at the top of the cornea stroma (right). FF-OCM can precisely identify the different layers of the cornea (basal epithelium left, Bowman’s layer center, stroma right, with keratocytes visible as bright, star-shaped forms), but can reveal only a few nerves, whereas the fluorescence can reveal all the nerves and the nerve endings in the epithelium. The scale bar is 40 µm.

Fig. 9
Fig. 9

(A) shows a Dynamic FF-OCM image of a Langerhans islet inside a fresh ex-vivo rat pancreas. One can notice the nuclei (arrow) with a circular shape and capillaries (*) irrigating the islet. (B) is a detailed view of the islet. (C) Shows the FF-OCM image a mouse intestinal tumor where the collagen matrix is highly visible compared to the cells inside the nests (*). (D) is a Dynamic FF-OCM image of the same field as (C), the collagen fibers are no longer visible because they are stationary, whereas the cancerous cells appear inside the nests and immune cells are revealed inside the collagen matrix (arrow). We also remove the ambiguity on zones like (*) and below where it was not clear if cancerous cells were present. The color bar is the same for the 3 images.

Fig. 10
Fig. 10

Static and dynamic FF-OCM of the retinal ganglion cell layer in mouse. These panels display 3 different views of the same plane inside the ganglion cell layer of a mouse retinal explant, about 30 μm from the surface of the retina. 1000 images have been acquired without pizeo modulation at 100 frames per second, with a 40X, 0.8NA objective. The left hand panel presents the static contrast of this plane offered by FF-OCM. By taking advantage of the dynamics inside the living cells of this retina, we computed the Fourier transform of the temporal signal fluctuations. The center panel shows an RGB combination of different frequency bands: The red color represents the low temporal frequencies (<0.5 Hz), the green the intermediate frequencies (between 0.5 and 10 Hz), and the blue emphasizes the fastest pixels (>10Hz). The right hand panel is the same image as the blue component of the image in the center panel. The scale bar is 30 μm.

Fig. 11
Fig. 11

OCM/elastography of artificial skin (Credit Amir Nahas).

Metrics