Abstract

Because conventional laser Doppler vibrometry or Doppler optical coherence tomography require mechanical scanning probes that cannot simultaneously measure the wide-range dynamics of bio-tissues, a multifrequency-swept optical coherence microscopy with wide-field heterodyne detection technique was developed. A 1024 × 1024 × 2000 voxel volume was acquired with an axial resolution of ~1.8 μm and an acquisition speed of 2 s. Vibration measurements at 10 kHz were performed over a wide field of view. Wide-field tomographic vibration measurements of a mouse tympanic membrane are demonstrated to illustrate the applicability of this method to live animals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues

Samuel Choi, Tomoya Watanabe, Takamasa Suzuki, Fumiaki Nin, Hiroshi Hibino, and Osami Sasaki
Opt. Express 23(16) 21078-21089 (2015)

Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]

Clara Pfäffle, Hendrik Spahr, Dierck Hillmann, Helge Sudkamp, Gesa Franke, Peter Koch, and Gereon Hüttmann
Biomed. Opt. Express 8(3) 1499-1511 (2017)

High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells

Tulsi Anna, Vishal Srivastava, Dalip Singh Mehta, and Chandra Shakher
Appl. Opt. 50(34) 6343-6351 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Stanbridge and D. J. Ewins, “Modal testing using a scanning laser Doppler vibrometer,” Mech. Syst. Signal Process. 13(2), 255–270 (1999).
    [Crossref]
  2. A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res. 293(1-2), 3–11 (2012).
    [Crossref] [PubMed]
  3. L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
    [PubMed]
  4. N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
    [Crossref] [PubMed]
  5. F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
    [Crossref] [PubMed]
  6. F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
    [Crossref] [PubMed]
  7. S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
    [Crossref] [PubMed]
  8. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
    [Crossref] [PubMed]
  9. B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
    [Crossref] [PubMed]
  10. J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
    [Crossref] [PubMed]
  11. D. MacDougall, J. Farrell, J. Brown, M. Bance, and R. Adamson, “Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics,” Biomed. Opt. Express 7(11), 4621–4635 (2016).
    [Crossref] [PubMed]
  12. H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
    [Crossref] [PubMed]
  13. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref] [PubMed]
  14. Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
    [Crossref]
  15. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [Crossref] [PubMed]
  16. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41(31), 6637–6645 (2002).
    [Crossref] [PubMed]
  17. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref] [PubMed]
  18. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480–1488 (2010).
    [Crossref] [PubMed]
  19. G. Moneron, A. C. Boccara, and A. Dubois, “Stroboscopic ultrahigh-resolution full-field optical coherence tomography,” Opt. Lett. 30(11), 1351–1353 (2005).
    [Crossref] [PubMed]
  20. K. Grieve, A. Dubois, M. Simonutti, M. Pâques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
    [Crossref] [PubMed]
  21. M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
    [Crossref]
  22. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
    [Crossref] [PubMed]
  23. P. Picart, J. Leval, J. C. Pascal, J. P. Boileau, M. Grill, J. M. Breteau, B. Gautier, and S. Gillet, “2D full field vibration analysis with multiplexed digital holograms,” Opt. Express 13(22), 8882–8892 (2005).
    [Crossref] [PubMed]
  24. I. Shavrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21(14), 16901–16907 (2013).
    [Crossref] [PubMed]
  25. M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
    [Crossref] [PubMed]
  26. S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
    [Crossref] [PubMed]
  27. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
    [Crossref] [PubMed]
  28. S. Choi, K. Kasiwagi, Y. Kasuya, S. Kojima, T. Shioda, and T. Kurokawa, “Multi-gigahertz frequency comb-based interferometry using frequency-variable supercontinuum generated by optical pulse synthesizer,” Opt. Express 20(25), 27820–27829 (2012).
    [Crossref] [PubMed]
  29. S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
    [Crossref]
  30. S. Muramatsu, S. Choi, and T. Kawamura, “3-D OCT data denoising with non-separable over-sampled lapped transform,” Proceedings of APSIPA Annual Summit and Conference (APSIPA, 2015), pp. 901–906.

2016 (2)

2015 (5)

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

2014 (1)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (2)

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
[Crossref]

2008 (1)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

2007 (1)

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

2006 (2)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett. 31(13), 1976–1978 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (1)

2002 (3)

2001 (1)

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[PubMed]

1999 (1)

A. B. Stanbridge and D. J. Ewins, “Modal testing using a scanning laser Doppler vibrometer,” Mech. Syst. Signal Process. 13(2), 255–270 (1999).
[Crossref]

Adamson, R.

Applegate, B. E.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

Bance, M.

Beaurepaire, E.

Benattar, L.

Boccara, A. C.

Boccara, C.

Boileau, J. P.

Breteau, J. M.

Brown, J.

Brzezinski, M.

Chang, E. W.

Chen, F.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Cheng, J. T.

J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
[Crossref] [PubMed]

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Choi, S.

Choudhury, N.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Clancy, C.

Dabu, R.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
[Crossref]

De Martino, A.

Drévillon, B.

Dubois, A.

Ellerbee, A. K.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Ewins, D. J.

A. B. Stanbridge and D. J. Ewins, “Modal testing using a scanning laser Doppler vibrometer,” Mech. Syst. Signal Process. 13(2), 255–270 (1999).
[Crossref]

Farrell, J.

Ferguson, D.

Franke, G.

Fridberger, A.

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res. 293(1-2), 3–11 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Furlong, C.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Gao, S. S.

Gautier, B.

Georges, P.

Gillet, S.

Grieve, K.

Grill, M.

Groves, A. K.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Hain, C.

Hibino, H.

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Hillmann, D.

Hrebesh, M. S.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
[Crossref]

Hüttmann, G.

Iftimia, N.

Jacques, S. L.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Kaivola, M.

Kasiwagi, K.

Kasuya, Y.

Khaleghi, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Kojima, S.

Kokkonen, K.

Kurokawa, T.

Laude, B.

Le Gargasson, J. F.

Lecaque, R.

Lee, D. J.

Lee, H. Y.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Leval, J.

Lipiäinen, L.

Ludvigsen, H.

MacDougall, D.

Maguluri, G.

Maruyama, Y.

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Matthews, S.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Moayedi, Y.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Moneron, G.

Moreau, J.

Moteki, D.

Nin, F.

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Novotny, S.

Nutall, A. L.

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

Nuttall, A. L.

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res. 293(1-2), 3–11 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Oghalai, J. S.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

B. E. Applegate, R. L. Shelton, S. S. Gao, and J. S. Oghalai, “Imaging high-frequency periodic motion in the mouse ear with coherently interleaved optical coherence tomography,” Opt. Lett. 36(23), 4716–4718 (2011).
[Crossref] [PubMed]

Pâques, M.

Park, J.

Pascal, J. C.

Pfäffle, C.

Picart, P.

Raphael, P. D.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Ravicz, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Robles, L.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[PubMed]

Rosowski, J. J.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Ruggero, M. A.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[PubMed]

Sacchet, D.

Sahel, J.

Sasaki, O.

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Sato, M.

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
[Crossref]

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Schwartz, L.

Shavrin, I.

Shelton, R. L.

Shi, X.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Shioda, T.

Simonutti, M.

Song, G.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Spahr, H.

Stanbridge, A. B.

A. B. Stanbridge and D. J. Ewins, “Modal testing using a scanning laser Doppler vibrometer,” Mech. Syst. Signal Process. 13(2), 255–270 (1999).
[Crossref]

Sudkamp, H.

Suzuki, T.

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Tanaka, Y.

Tschinkel, T.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Vabre, L.

Wang, R.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Wang, R. K.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Watanabe, T.

Watanabe, Y.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Xia, A.

Yamamoto, M.

Zha, D.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Zheng, J.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Zuo, J.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (3)

Hear. Res. (2)

A. L. Nuttall and A. Fridberger, “Instrumentation for studies of cochlear mechanics: from von Békésy forward,” Hear. Res. 293(1-2), 3–11 (2012).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

F. Chen, N. Choudhury, J. Zheng, S. Matthews, A. L. Nutall, and S. L. Jacques, “In vivo imaging and low-coherence interferometry of organ of Corti vibration,” J. Biomed. Opt. 12(2), 021006 (2007).
[Crossref] [PubMed]

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

J. Neurophysiol. (1)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Mech. Syst. Signal Process. (1)

A. B. Stanbridge and D. J. Ewins, “Modal testing using a scanning laser Doppler vibrometer,” Mech. Syst. Signal Process. 13(2), 255–270 (1999).
[Crossref]

Nat. Neurosci. (1)

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Opt. Commun. (3)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

M. S. Hrebesh, R. Dabu, and M. Sato, “In vivo imaging of dynamic biological specimen by real-time single-shot full-field optical coherence tomography,” Opt. Commun. 282(4), 674–683 (2009).
[Crossref]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Physiol. Rev. (1)

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Other (1)

S. Muramatsu, S. Choi, and T. Kawamura, “3-D OCT data denoising with non-separable over-sampled lapped transform,” Proceedings of APSIPA Annual Summit and Conference (APSIPA, 2015), pp. 901–906.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(A) Experimental setup of the MS-OCM system and (B) the low-coherence comb spectra generated by the FP filter. The vertical axes are linear scale.

Fig. 2
Fig. 2

Concept of the wide-field heterodyne interferometric vibrometry (WHIV) technique.

Fig. 3
Fig. 3

Measurement results of a 20-μm-thick glass plate. (A) A-scan interferogram obtained at one pixel and (B) 2D cross-sectional tomographic image of the glass plate at x = 1.5 mm.

Fig. 4
Fig. 4

MS-OCM images of mouse tympanic membrane: (A) a picture of the sample (a mouse tympanic membrane), (B-D) 3D volume-rendered images shown from different viewpoints. (E) y–z cross-sectional image, and (F) x–z cross-sectional image of the tympanic membrane.

Fig. 5
Fig. 5

Results of FF vibration measurements of the planar mirror at a frequency of 10 kHz: (A) amplitude distributions and (B) phase distributions when the peak-to-peak voltage of the sinusoidal signal was 7, 1, and 0.1 V. (Scale bar: 1 mm) Data for which the illumination intensity was below 1% of the maximum were removed. (C) 1D profiles of spatial amplitude at y = 500 for each peak-to-peak voltage. The spatial fluctuations increased according to vibration amplitude with almost the same rate of approximately 15–20% of their averaging amplitude.

Fig. 6
Fig. 6

FFT spectral intensity distributions of temporal heterodyne signals acquired at one pixel of the camera signal when the supplying voltage was (A) 7, (B) 1, and (C) 0.1 Vpp. LFN: Low-frequency noise, SBN: side-band noise, 0th order: |F(0)| = |A + Bcos(α)J0(Zr)J0(Zs)|, and 1st order: |F(δf)| = |Bcos(α)J1(Zr)J1(Zs)|. The SBN appeared around strong signal of first-order component, whereas it was buried by the noise floor when the peak was attenuated.

Fig. 7
Fig. 7

FF vibration measurement result of the planar mirror estimated from 1st order and 2nd order components: (A) spatial amplitude distribution, and (B) comparison between 1D amplitude profiles obtained by R12 and R01. Employing second-order component could improve the spatial fluctuation when the comparably large vibration was applied to the sample.

Fig. 8
Fig. 8

Vibration amplitude and phase distributions mapped in microscope images of a mouse tympanic membrane. Amplitude distributions at depths of approximately (A) 55 μm and (C) 75 μm. Phase distributions of (B) and (D), respectively. (E) and (F) Representative FFT spectral intensity distributions at each depth. The extracted distributions of first and second-order components were used for estimation of vibration amplitude.

Fig. 9
Fig. 9

A-scan interferogram of glass plate [Fig. 3 (a)] plotted on a log scale.

Fig. 10
Fig. 10

Normalized fringe contrast as a function of v, when T = 1 ms and λ = 850 nm.

Tables (1)

Tables Icon

Table 1 Measured amplitude values and comparison to measurement results of conventional laser vibrometer

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 (L)= A 0 +B(L2d)cos[2π( L2d λ )],
B(L2d)= πc 4dF B 0 exp[ πL 2dF ]h(L2d),
I 1 (t)=A+B(Ld)cos[α+ Z s cos(2π f s t+ φ s )+ Z r cos(2π f r t+ φ r )],
I 1 (t)=A+Bcos[α] J 0 ( Z r ) J 0 ( Z s ) +2Bcos[α] J 1 ( Z r ) J 1 ( Z s )cos(2πδft+δφ)+2Bcos[α] J 2 ( Z r ) J 2 ( Z s )cos(4πδft+2δφ),
φ(t)= 4π λ vt,
I n = A 0 T+B 0 T cos[ φ n1 + 4πvt λ ] dt = A 0 T+BTsinc[ 2π λ vT ]cos( φ n1 +φ( T 2 )),

Metrics