Abstract

We employ laser induced fluorescence (LIF) spectroscopy to discriminate between normal and cancerous human breast (in-vitro) tissues. LIF signals are usually enhanced by the exogenous agents such as Rhodamine 6G (Rd6G) and Coumarin 7 (C7). Although we observe fluorescence emissions in both fluorophores, Rd6G–stained tissues give notable spectral red shift in practice. The latter is a function of dye concentration embedded in tissues. We find that such red shifts have a strong dependence on the dye concentration in bare, in stained healthy, and in malignant breast tissues, signifying variations in tubular abundances. In fact, the heterogeneity of cancerous tissues is more prominent mainly due to their notable tubular densities– which can provide numerous micro-cavities to house more dye molecules. We show that this can be used to discriminate between the healthy and unhealthy specimens in different biological scaffolds of ordered (healthy) and disordered (cancerous) tissues. It is demonstrated that the quenching process of fluorophore’ molecules slows down in the neoplastic tumors according to the micro-partitioning, too.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar
Biomed. Opt. Express 6(5) 1679-1693 (2015)

Wide-field imaging of fluorescent deoxy-glucose in ex vivo malignant and normal breast tissue

R. J. Langsner, L. P. Middleton, J. Sun, F. Meric-Bernstam, K. K. Hunt, R. A. Drezek, and T. K. Yu
Biomed. Opt. Express 2(6) 1514-1523 (2011)

Depolarization of autofluorescence from malignant and normal human breast tissues

Samarendra K. Mohanty, Nirmalya Ghosh, Shovan K. Majumder, and Pradeep K. Gupta
Appl. Opt. 40(7) 1147-1154 (2001)

References

  • View by:
  • |
  • |
  • |

  1. Breast cancer facts and figures, American Cancer Society (2016).
  2. Breast Cancer, American cancer society (2015).
  3. J. L. Connolly and J. Stuart, H. H. Wang, J. A. Longtine, A. Dvorak and H. F. Dvorak, Cancer Medicine (BC Decker, 2003)
  4. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
    [Crossref] [PubMed]
  5. C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).
  6. L. T. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3(6), 787–803 (2006).
    [Crossref] [PubMed]
  7. N. Ramanujam, Fluorescence Spectroscopy in vivo (John Wiley & Sons Ltd, 2000), 20–56.
  8. F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, A. Amjadi, and S. Abachi, “LIBS and AR techniques to discriminate healthy and cancerous breast tissues,” Appl. Opt. 55, 1–9 (2016).
    [Crossref] [PubMed]
  9. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
    [Crossref] [PubMed]
  10. M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
    [Crossref]
  11. P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
    [Crossref] [PubMed]
  12. Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
    [Crossref] [PubMed]
  13. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
    [Crossref] [PubMed]
  14. N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
    [Crossref]
  15. N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7, 1–7 (2016).
    [PubMed]
  16. A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
    [Crossref] [PubMed]
  17. G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
    [Crossref] [PubMed]
  18. Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
    [Crossref] [PubMed]
  19. J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
    [Crossref] [PubMed]
  20. S. O. Osaghae and D. T. L. Turner, “Photodynamic diagnosis of bladder cancer: Initial experience of a single UK centre,” Afr. J. Urol. 20(3), 123–129 (2014).
    [Crossref]
  21. P. Jichlinski and D. Jacqmin, “Photodynamic diagnosis in non- muscle- invasive bladder cancer,” Eur. Urol. Suppl. 7(7), 529–535 (2008).
    [Crossref]
  22. J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
    [Crossref] [PubMed]
  23. C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
    [Crossref] [PubMed]
  24. A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
    [Crossref] [PubMed]
  25. S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
    [Crossref] [PubMed]
  26. A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).
  27. S. Kimiagar, “Fractal shape of cancer tumor growth,” Biochemical and Biophysics 1, 7–12 (2013).
  28. J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60(14), 3683–3688 (2000).
    [PubMed]
  29. F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).
  30. M. Keraji, F. H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. OSA-SPIE 8798, 87980A1 (2013).
    [Crossref]
  31. J. Rosai, Surgical Pathology (Elsevier, 2011).
  32. F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).
  33. K. Huang and A. Rhys, “Theory of light absorption and nonradiative transitions in F-centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
    [Crossref]
  34. G. Beckering, S. J. Zilker, and D. Haarer, “Spectral measurements of the emission from highly scattering gain media,” Opt. Lett. 22(18), 1427–1429 (1997).
    [Crossref] [PubMed]
  35. A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
    [Crossref] [PubMed]
  36. W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
    [Crossref] [PubMed]
  37. J. S. Sandhu and P. S. Takhar, “Effect of frying parameters on mechanical properties and microstructure of potato disks,” J. Texture Stud. 46(5), 385–397 (2015).
    [Crossref]
  38. R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]

2016 (3)

2015 (3)

A. Bavali, P. Parvin, S. Z. Mortazavi, and S. S. Nourazar, “Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution,” Biomed. Opt. Express 6(5), 1679–1693 (2015).
[Crossref] [PubMed]

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

J. S. Sandhu and P. S. Takhar, “Effect of frying parameters on mechanical properties and microstructure of potato disks,” J. Texture Stud. 46(5), 385–397 (2015).
[Crossref]

2014 (2)

2013 (4)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
[Crossref]

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

S. Kimiagar, “Fractal shape of cancer tumor growth,” Biochemical and Biophysics 1, 7–12 (2013).

2012 (2)

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
[Crossref] [PubMed]

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

2011 (3)

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
[Crossref] [PubMed]

Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
[Crossref] [PubMed]

2010 (1)

W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
[Crossref] [PubMed]

2009 (1)

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

2008 (3)

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

P. Jichlinski and D. Jacqmin, “Photodynamic diagnosis in non- muscle- invasive bladder cancer,” Eur. Urol. Suppl. 7(7), 529–535 (2008).
[Crossref]

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

2006 (1)

L. T. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3(6), 787–803 (2006).
[Crossref] [PubMed]

2005 (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

2004 (1)

R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2003 (1)

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

2000 (2)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60(14), 3683–3688 (2000).
[PubMed]

1997 (3)

G. Beckering, S. J. Zilker, and D. Haarer, “Spectral measurements of the emission from highly scattering gain media,” Opt. Lett. 22(18), 1427–1429 (1997).
[Crossref] [PubMed]

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
[Crossref] [PubMed]

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and nonradiative transitions in F-centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[Crossref]

Abachi, S.

Abolhosseini, S.

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Alfano, R. R.

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

Amjadi, A.

Atyabi, F.

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7, 1–7 (2016).
[PubMed]

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Baish, J. W.

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60(14), 3683–3688 (2000).
[PubMed]

Baptista, P.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
[Crossref] [PubMed]

Bavali, A.

Beckering, G.

Breslin, T. M.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

Cai, W.

Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
[Crossref] [PubMed]

Calcagno, C.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Celmer, E. J.

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

Chowdary, M.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Conde, J.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
[Crossref] [PubMed]

Conde, O. M.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Dijk, W. J.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Doria, G.

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
[Crossref] [PubMed]

Eguizabal, A.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Fayad, Z. A.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Fu, C. Y.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
[Crossref]

Ghasemi, F.

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, A. Amjadi, and S. Abachi, “LIBS and AR techniques to discriminate healthy and cancerous breast tissues,” Appl. Opt. 55, 1–9 (2016).
[Crossref] [PubMed]

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7, 1–7 (2016).
[PubMed]

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

Gianella, A.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Griffioen, A. W.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Grimm, J.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

Gupta, P. K.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
[Crossref] [PubMed]

Haarer, D.

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Ho, C. J. H.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
[Crossref]

Hong, H.

Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
[Crossref] [PubMed]

Hosseini Motlagh, N. S.

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, and F. Atyabi, “Fluorescence properties of several chemotherapy drugs: Doxorubicin, Paclitaxel and Bleomycin,” Biomed. Opt. Express 7, 1–7 (2016).
[PubMed]

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, A. Amjadi, and S. Abachi, “LIBS and AR techniques to discriminate healthy and cancerous breast tissues,” Appl. Opt. 55, 1–9 (2016).
[Crossref] [PubMed]

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and nonradiative transitions in F-centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[Crossref]

Hunt, J. P.

A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
[Crossref] [PubMed]

Jacqmin, D.

P. Jichlinski and D. Jacqmin, “Photodynamic diagnosis in non- muscle- invasive bladder cancer,” Eur. Urol. Suppl. 7(7), 529–535 (2008).
[Crossref]

Jadeja, P.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Jain, R. K.

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60(14), 3683–3688 (2000).
[PubMed]

Jarzyna, P. A.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Jelvani, S.

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Jeong, S. Y.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Jichlinski, P.

P. Jichlinski and D. Jacqmin, “Photodynamic diagnosis in non- muscle- invasive bladder cancer,” Eur. Urol. Suppl. 7(7), 529–535 (2008).
[Crossref]

Kaittanis, C.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

Kalyan Kumar, K.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Kann, B.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Katz, A.

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

Keely, P. J.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

Keraji, M.

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

Kim, J.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Kim, S.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Kimiagar, S.

S. Kimiagar, “Fractal shape of cancer tumor growth,” Biochemical and Biophysics 1, 7–12 (2013).

Klonowski, W.

W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
[Crossref] [PubMed]

Krishnaswamy, V.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Kurien, J.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Kwon, I. C.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Laughney, A. M.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Lee, Y.-D.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Lim, C.-K.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

López-Higuera, J. M.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Maheedhar, K.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Majumder, S. K.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
[Crossref] [PubMed]

Mani, V.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Mathew, S.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Menon, J. U.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Mirzaee, F. H.

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

Mohammadian, M.

Mortazavi, S. Z.

Mousavi Pour, M. R.

Mulder, W. J.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Murali Krishna, C.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Nguyen, K. T.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Nourazar, S. S.

Oh, K. S.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Oldenburg, A. L.

A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
[Crossref] [PubMed]

Olivo, M.

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
[Crossref]

Osaghae, S. O.

S. O. Osaghae and D. T. L. Turner, “Photodynamic diagnosis of bladder cancer: Initial experience of a single UK centre,” Afr. J. Urol. 20(3), 123–129 (2014).
[Crossref]

Palmer, G. M.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

Parvin, P.

Paulsen, K. D.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Perelman, L. T.

L. T. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3(6), 787–803 (2006).
[Crossref] [PubMed]

Perez, J. M.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

Pogue, B. W.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Polson, R. C.

R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Qingpu, W.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

Ramachandran, S.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Ramanujam, N.

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Rao, L.

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and nonradiative transitions in F-centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[Crossref]

Ruijun, L.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

Sandhu, J. S.

J. S. Sandhu and P. S. Takhar, “Effect of frying parameters on mechanical properties and microstructure of potato disks,” J. Texture Stud. 46(5), 385–397 (2015).
[Crossref]

Santra, S.

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Shin, J.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Shuzhen, F.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

Stepien, P.

W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
[Crossref] [PubMed]

Stepien, R.

W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
[Crossref] [PubMed]

Storm, G.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Sullivan, A. C.

A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
[Crossref] [PubMed]

Takhar, P. S.

J. S. Sandhu and P. S. Takhar, “Effect of frying parameters on mechanical properties and microstructure of potato disks,” J. Texture Stud. 46(5), 385–397 (2015).
[Crossref]

Tambe, P.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Tang, J.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Thijssen, V. L.

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Turner, D. T. L.

S. O. Osaghae and D. T. L. Turner, “Photodynamic diagnosis of bladder cancer: Initial experience of a single UK centre,” Afr. J. Urol. 20(3), 123–129 (2014).
[Crossref]

Uppal, A.

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
[Crossref] [PubMed]

Vardenya, Z. V.

R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Vu, K.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Wells, W. A.

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Xingyu, Z.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

Yang, Y.

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

Yuan, B.

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

Yuk, S. H.

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
[Crossref] [PubMed]

Zhengping, Z. C. W.

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

Zilker, S. J.

Zurawska-Szczepaniak, M.

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

ACS Nano (1)

A. Gianella, P. A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W. J. Dijk, V. L. Thijssen, A. W. Griffioen, G. Storm, Z. A. Fayad, and W. J. Mulder, “Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer,” ACS Nano 5(6), 4422–4433 (2011).
[Crossref] [PubMed]

Afr. J. Urol. (1)

S. O. Osaghae and D. T. L. Turner, “Photodynamic diagnosis of bladder cancer: Initial experience of a single UK centre,” Afr. J. Urol. 20(3), 123–129 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Biochemical and Biophysics (1)

S. Kimiagar, “Fractal shape of cancer tumor growth,” Biochemical and Biophysics 1, 7–12 (2013).

Biomed. Opt. Express (2)

Cancer Res. (1)

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res. 60(14), 3683–3688 (2000).
[PubMed]

Cold Spring Harb. Protoc. (1)

Y. Zhang, H. Hong, and W. Cai, “Photoacoustic imaging,” Cold Spring Harb. Protoc. 2011(9), 1015–1025 (2011).
[Crossref] [PubMed]

Eur. Urol. Suppl. (1)

P. Jichlinski and D. Jacqmin, “Photodynamic diagnosis in non- muscle- invasive bladder cancer,” Eur. Urol. Suppl. 7(7), 529–535 (2008).
[Crossref]

Expert Rev. (1)

C. Murali Krishna, J. Kurien, S. Mathew, L. Rao, K. Maheedhar, K. Kalyan Kumar, and M. Chowdary, “Raman spectroscopy of breast cancer,” Expert Rev. 2, 149166 (2008).

Expert Rev. Med. Devices (1)

L. T. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3(6), 787–803 (2006).
[Crossref] [PubMed]

IJOP (1)

F. Ghasemi, P. Parvin, N. S. Hosseini Motlagh, M. Keraji, F. H. Mirzaee, and A. Bavali, “Optical spectroscopic methods to discriminate in- Vitro Hodgkin cancerous and normal tissues,” IJOP 9, 65–72 (2015).

J. Biomed. Opt. (1)

A. C. Sullivan, J. P. Hunt, and A. L. Oldenburg, “Fractal analysis for classification of breast carcinoma in optical coherence tomography,” J. Biomed. Opt. 16(6), 066010 (2011).
[Crossref] [PubMed]

J. Drug Deliv. (1)

J. Conde, G. Doria, and P. Baptista, “Noble metal nanoparticles applications in cancer,” J. Drug Deliv. 2012, 751075 (2012).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

F. Shuzhen, Z. Xingyu, W. Qingpu, Z. C. W. Zhengping, and L. Ruijun, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers,” J. Phys. D Appl. Phys. 42, 015105 (2008).

J. Texture Stud. (1)

J. S. Sandhu and P. S. Takhar, “Effect of frying parameters on mechanical properties and microstructure of potato disks,” J. Texture Stud. 46(5), 385–397 (2015).
[Crossref]

Laser Photonics Rev. (1)

M. Olivo, C. J. H. Ho, and C. Y. Fu, “Advances in fluorescence diagnosis to track footprints of cancer progression in vivo,” Laser Photonics Rev. 7(5), 1–17 (2013).
[Crossref]

Laser Phys. Lett. (1)

N. S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, S. Jelvani, and S. Abolhosseini, “Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine,” Laser Phys. Lett. 13(7), 075604 (2016).
[Crossref]

Lasers Surg. Med. (1)

P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med. 21(5), 417–422 (1997).
[Crossref] [PubMed]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Nonlinear Biomed. Phys. (1)

W. Klonowski, R. Stepien, and P. Stepien, “Simple fractal method of assessment of histological images for application in medical diagnostics,” Nonlinear Biomed. Phys. 4(1), 7 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (2)

Y. Yang, A. Katz, E. J. Celmer, M. Zurawska-Szczepaniak, and R. R. Alfano, “Fundamental differences of excitation spectrum between malignant and benign breast tissues,” Photochem. Photobiol. 66(4), 518–522 (1997).
[Crossref] [PubMed]

G. M. Palmer, P. J. Keely, T. M. Breslin, and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem. Photobiol. 78(5), 462–469 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

K. Huang and A. Rhys, “Theory of light absorption and nonradiative transitions in F-centres,” Proc. R. Soc. Lond. A Math. Phys. Sci. 204(1078), 406–423 (1950).
[Crossref]

Pros. SPIE. (1)

A. Eguizabal, A. M. Laughney, V. Krishnaswamy, W. A. Wells, K. D. Paulsen, B. W. Pogue, J. M. López-Higuera, and O. M. Conde, “Fractal analysis of scatter imaging signatures to distinguish breast pathologies,” Pros. SPIE. 8592, 1–2 (2013).

Small (1)

S. Santra, C. Kaittanis, J. Grimm, and J. M. Perez, “Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging,” Small 5(16), 1862–1868 (2009).
[Crossref] [PubMed]

Theranostics (2)

J. U. Menon, P. Jadeja, P. Tambe, K. Vu, B. Yuan, and K. T. Nguyen, “Nanomaterials for photo-based diagnostic and therapeutic applications,” Theranostics 3(3), 152–166 (2013).
[Crossref] [PubMed]

C.-K. Lim, J. Shin, Y.-D. Lee, J. Kim, K. S. Oh, S. H. Yuk, S. Y. Jeong, I. C. Kwon, and S. Kim, “Phthalocyanine-aggregated polymeric nanoparticles as tumor-homing near-infrared absorbers for photothermal therapy of cancer,” Theranostics 2(9), 871–879 (2012).
[Crossref] [PubMed]

Other (6)

N. Ramanujam, Fluorescence Spectroscopy in vivo (John Wiley & Sons Ltd, 2000), 20–56.

Breast cancer facts and figures, American Cancer Society (2016).

Breast Cancer, American cancer society (2015).

J. L. Connolly and J. Stuart, H. H. Wang, J. A. Longtine, A. Dvorak and H. F. Dvorak, Cancer Medicine (BC Decker, 2003)

M. Keraji, F. H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” Proc. OSA-SPIE 8798, 87980A1 (2013).
[Crossref]

J. Rosai, Surgical Pathology (Elsevier, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of LIF set-up for the stained tissues.
Fig. 2
Fig. 2 (a) Red shift and the FWHM of the overlapping between absorption and the corresponding fluorescence emission spectra versus C7 concentrations ranging from 0.05 to 3 mM; inset: the fluorescence spectra in terms of the C7 concentration, (b) Spectral shift and the FWHM of overlapping area versus 0.05 to 3 mM of Rd6G concentration; Inset: the fluorescence spectra for various Rd6G concentrations. The emissive photons are collected by the fiber placed at the right angle position (φ = 90°) in the case of a and b, (c) Spectral shift and FWHM of the overlapping area as a function of C7 solutions, ranging 0.25–4 mM (φ = 45°); inset: Fluorescence spectra in terms of C7 concentrations showing no detectable spectral shift, (d) the spectral shift and FWHM of the overlapping area versus Rd6G concentrations, ranging 0.25–4 mM (φ = 45°). Inset: Corresponding fluorescence spectra versus various Rd6G concentrations. Note that all the above spectra are taken for the bare solutions (without tissue attendance).
Fig. 3
Fig. 3 (a) Typical histological images of dye–stained normal, and (b) malignant (IDC) breast tissues indicating numerous micro–porosity sites in IDC tissue (partitioning effect) unlike a healthy one, (c) tissue integrity test indicating the integrity versus scanning distance of a typical normal and cancerous tissues using image pro–insight software. There is a notable discrepancy between normal and cancerous tissues.
Fig. 4
Fig. 4 a) Emissive wavelengths of the (Rd6G + normal) and (Rd6G + cancerous) in-vitro breast tissues at the certain Rd6G concentrations of 0.5, 1.5, 2.5 and 4mM accompanying the bare fluorescence spectra for the 0.25–4mM Rd6G solutions (in the absence of tissue), (b) A typical fluorescence spectra of the (Rd6G + normal) and (Rd6G + malignant) breast tissues at 4 mM indicating the lucid red shift of the fluorescence emission of the cancerous tissue, (c) Spectral shift and the corresponding FWHM of overlapping region in terms of Rd6G concentration, d) Emissive wavelength of Rd6G stained a typical plant tissue (solanum toberosum−potato) emphasizes similar red shift in terms of Rd6G concentration, inset: SEM image of the stained plant tissue representing micro-cavity sites [37]. The honey−hive like architectures acts as a micro-partitioning structure during LIF. In all cases the fiber was set at φ = 45°.
Fig. 5
Fig. 5 LSCM images of a) Cancerous breast tissues without dye, b) Breast tumor stained in 0.5mM Rd6G solution, c) Breast tumor stained in 2.5mM Rd6G solution, d) Normal breast tissue without dye, e) Normal breast sample stained in 0.5mM Rd6G solution and f) Normal breast tissue stained in 2.5mM Rd6G solution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ= ν ex peak ν f peak

Metrics