Abstract

A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the field of view of adaptive optics scanning laser ophthalmoscopy

Marie Laslandes, Matthias Salas, Christoph K. Hitzenberger, and Michael Pircher
Biomed. Opt. Express 8(11) 4811-4826 (2017)

Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging

Daniel X. Hammer, R. Daniel Ferguson, Chad E. Bigelow, Nicusor V. Iftimia, Teoman E. Ustun, and Stephen A. Burns
Opt. Express 14(8) 3354-3367 (2006)

Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

Robert J. Zawadzki, Steven M. Jones, Suman Pilli, Sandra Balderas-Mata, Dae Yu Kim, Scot S. Olivier, and John S. Werner
Biomed. Opt. Express 2(6) 1674-1686 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M.S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 6, 776–794 (1961).
  2. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [Crossref]
  3. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [Crossref] [PubMed]
  4. J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
    [Crossref]
  5. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
    [Crossref] [PubMed]
  6. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [Crossref]
  7. A. Roorda, F. Romero-Borja, W. J. Da, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [Crossref] [PubMed]
  8. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [Crossref] [PubMed]
  9. J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
    [Crossref]
  10. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011).
    [Crossref] [PubMed]
  11. R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
    [Crossref]
  12. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a hartmann–shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [Crossref]
  13. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  14. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [Crossref]
  15. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
    [Crossref]
  16. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
    [Crossref] [PubMed]
  17. Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23, 23035–23052 (2015).
    [Crossref] [PubMed]
  18. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom cmosbased hartmann-shack sensor,” Opt. Express 11, 2704–2716 (2003).
    [Crossref] [PubMed]
  19. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [Crossref] [PubMed]
  20. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
    [Crossref] [PubMed]
  21. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
    [Crossref]
  22. F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics slo/oct for 3d imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
    [Crossref] [PubMed]
  23. A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15, 2762–2769 (2007).
    [Crossref] [PubMed]
  24. K. Sudo and B. Cense, “Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration,” Proc SPIE 8567, 85671W (2013).
    [Crossref]
  25. M. Salas, W. Drexler, X. Levecq, B. Lamory, M. Ritter, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting,” Biomed. Opt. Express 7, 1783–1796 (2016).
    [Crossref] [PubMed]
  26. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2, 1674–1686 (2011).
    [Crossref] [PubMed]
  27. A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5, 713–727 (2014).
    [Crossref] [PubMed]
  28. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4, 3007–3030 (2013).
    [Crossref]
  29. L. Huang, C. Rao, and W. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16, 108 (2008).
    [Crossref] [PubMed]
  30. J. M. Geary, Introduction to Wavefront Sensors (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995).
    [Crossref]
  31. R. G. Lane and M. Tallon, “Wave-front reconstruction using a shack–hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992).
    [Crossref] [PubMed]
  32. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  33. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
    [Crossref]
  34. G. H. Golub and C. F. V. Loan, Matrix Computations (JHU Press, Baltimore, 2012).
  35. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
    [Crossref] [PubMed]
  36. A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).
  37. F. Felberer, J.-S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20, 17297–17310 (2012).
    [Crossref] [PubMed]
  38. “Safety of laser products. part 1: Equipment classification, requirements and user’s guide,” Standard EN 60825-1/A2.
  39. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [Crossref] [PubMed]
  40. D. Merino, J. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2, 2189–2201 (2011).
    [Crossref] [PubMed]
  41. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
    [Crossref]
  42. D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
    [Crossref]
  43. J. Polans, R. P. McNabb, J. A. Izatt, and S. Farsiu, “Compressed wavefront sensing,” Opt. Lett. 391189–1192 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (3)

2013 (2)

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4, 3007–3030 (2013).
[Crossref]

K. Sudo and B. Cense, “Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration,” Proc SPIE 8567, 85671W (2013).
[Crossref]

2012 (1)

2011 (5)

2009 (1)

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

2003 (2)

2002 (4)

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of wave-front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[Crossref]

A. Roorda, F. Romero-Borja, W. J. Da, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
[Crossref]

2001 (3)

2000 (1)

1997 (2)

1994 (1)

1992 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

1976 (1)

1961 (1)

M.S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 6, 776–794 (1961).

1947 (1)

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Aragón, J. L.

Artal, P.

Awwal, A. A. S.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Balderas-Mata, S.

Baumann, B.

Bigelow, C. E.

Bille, J.

Bille, J. F.

Bower, B. A.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Burns, S. A.

Cagigal, M. P.

Campbell, M. C.

Canales, V. F.

Carroll, J.

Castejón-Mochón, J. F.

Cense, B.

K. Sudo and B. Cense, “Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration,” Proc SPIE 8567, 85671W (2013).
[Crossref]

Chen, L.

Cheng, X.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Choi, S.

Cooper, R. F.

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
[Crossref]

Cox, I. G.

Curcio, C. A.

Da, W. J.

Dainty, C.

Dainty, J. C.

Diaz-Santana, L.

Drexler, W.

Dubis, A. M.

Dubra, A.

Duncan, J.

Elsner, A. E.

Farsiu, S.

Felberer, F.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Fusco, T.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Gasson, P.

Geary, J. M.

J. M. Geary, Introduction to Wavefront Sensors (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995).
[Crossref]

Goelz, S.

Golub, G. H.

G. H. Golub and C. F. V. Loan, Matrix Computations (JHU Press, Baltimore, 2012).

Grimm, B.

Guirao, A.

Hafner, J.

Hammer, D. X.

Hebert, T. J.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Hofer, H.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Huang, L.

Hunter, J. J.

Iftimia, N. V.

Izatt, J. A.

Jiang, W.

Jones, S. M.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Kim, D. Y.

Kocaoglu, O. P.

Kroisamer, J.-S.

Lamory, B.

Lane, R. G.

Laut, S.

Levecq, X.

Liang, J.

Lin, J.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Liu, Z.

Loan, C. F. V.

G. H. Golub and C. F. V. Loan, Matrix Computations (JHU Press, Baltimore, 2012).

López-Gil, N.

Marechal, A.

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Masella, B.

McNabb, R. P.

Meadway, A.

Merigan, W.

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

Merigan, W. H.

Merino, D.

Michau, V.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Miller, D. T.

Morgan, J.

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

Munro, I.

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
[Crossref]

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
[Crossref]

Nicolle, M.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Nirmaier, T.

Noll, R. J.

Norris, J. L.

Olivier, S. S.

Palczewska, G.

Palczewski, K.

Paterson, C.

Pilli, S.

Pircher, M.

Polans, J.

Porter, J.

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[Crossref]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Prager, S.

Prieto, P. M.

Pudasaini, G.

Queener, H.

A. Roorda, F. Romero-Borja, W. J. Da, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Rao, C.

Ritter, M.

Romero-Borja, F.

Roorda, A.

Rousset, G.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Salas, M.

Sattmann, H.

Schmidt-Erfurth, U.

Sharma, R.

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

Smirnov, M.S.

M.S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 6, 776–794 (1961).

Sudo, K.

K. Sudo and B. Cense, “Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration,” Proc SPIE 8567, 85671W (2013).
[Crossref]

Sulai, Y.

Tallon, M.

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

Thomas, S.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Thorn, K.

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

Tiruveedhula, P.

Tokovinin, A.

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Torti, C.

Tumbar, R.

Tyson, R.

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
[Crossref]

Unterhuber, A.

Ustun, T. E.

Wang, X.

Werner, J. S.

Williams, D.

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

Williams, D. R.

Wolfe, R.

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

Yamauchi, Y.

Yin, L.

Yoon, G. Y.

Yu, Y.

Zawadzki, R. J.

Zhang, T.

Zhang, Y.

Zhao, M.

Zotter, S.

Appl. Opt. (1)

Biomed. Opt. Express (8)

F. Felberer, J.-S. Kroisamer, B. Baumann, S. Zotter, U. Schmidt-Erfurth, C. K. Hitzenberger, and M. Pircher, “Adaptive optics slo/oct for 3d imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5, 439–456 (2014).
[Crossref] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2, 139–148 (2011).
[Crossref] [PubMed]

M. Salas, W. Drexler, X. Levecq, B. Lamory, M. Ritter, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting,” Biomed. Opt. Express 7, 1783–1796 (2016).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2, 1674–1686 (2011).
[Crossref] [PubMed]

A. Meadway, X. Wang, C. A. Curcio, and Y. Zhang, “Microstructure of subretinal drusenoid deposits revealed by adaptive optics imaging,” Biomed. Opt. Express 5, 713–727 (2014).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4, 3007–3030 (2013).
[Crossref]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
[Crossref] [PubMed]

D. Merino, J. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2, 2189–2201 (2011).
[Crossref] [PubMed]

Biophysics (1)

M.S. Smirnov, “Measurement of the wave aberration of the human eye,” Biophysics 6, 776–794 (1961).

Invest Ophthalmol Vis Sci. (1)

J. Morgan, A. Dubra, R. Wolfe, W. Merigan, and D. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest Ophthalmol Vis Sci. 50, 1350–1359 (2009).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
[Crossref]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. 19, 2329–2348 (2002).
[Crossref]

J. Opt. Soc. Am. A (6)

Monthly Notices of the Royal Astronomical Society (1)

S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a shack-hartmann sensor,” Monthly Notices of the Royal Astronomical Society 371, 323–336 (2011).
[Crossref]

Opt. Express (11)

F. Felberer, J.-S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20, 17297–17310 (2012).
[Crossref] [PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
[Crossref] [PubMed]

Y. Yu, T. Zhang, A. Meadway, X. Wang, and Y. Zhang, “High-speed adaptive optics for imaging of the living human eye,” Opt. Express 23, 23035–23052 (2015).
[Crossref] [PubMed]

T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom cmosbased hartmann-shack sensor,” Opt. Express 11, 2704–2716 (2003).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3d retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[Crossref] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Da, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[Crossref] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[Crossref] [PubMed]

L. Huang, C. Rao, and W. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16, 108 (2008).
[Crossref] [PubMed]

A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15, 2762–2769 (2007).
[Crossref] [PubMed]

C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc SPIE (2)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-hartmann wavefront sensor precision and accuracy,” Proc SPIE 4779, 148–160 (2002).
[Crossref]

K. Sudo and B. Cense, “Adaptive optics-assisted optical coherence tomography for imaging of patients with age related macular degeneration,” Proc SPIE 8567, 85671W (2013).
[Crossref]

Rev. Opt. (1)

A. Marechal, “Etude des effets combines de la diffraction et des aberrations geometriques sur l’image d’un point lumineux,” Rev. Opt. 2, 257–277 (1947).

Other (5)

G. H. Golub and C. F. V. Loan, Matrix Computations (JHU Press, Baltimore, 2012).

J. M. Geary, Introduction to Wavefront Sensors (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1995).
[Crossref]

R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC Press, Boca Raton, 2010).
[Crossref]

J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, Adaptive Optics for Vision Science: Principles, Practices, Design and Applications (Wiley, Hoboken, 2006).
[Crossref]

“Safety of laser products. part 1: Equipment classification, requirements and user’s guide,” Standard EN 60825-1/A2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Modeled AO loop. EP: entrance pupil, BS1 and BS2: beam splitters, L1 and L2: telescope lenses, DM: deformable mirror, SH: Shack Hartmann sensor (measures the slopes of the WF), WFS: wave-front sensor (reference sensor, measures the phase of the WF).
Fig. 2
Fig. 2 (a) Modeled influence function of one actuator of the DM52 as seen by a SH with a 12×12 lenslet array. The arrows represent the direction of the slopes of the WF at the lenslets location (arbitrary unit). (b) Same influence function as seen by WFS (μm).
Fig. 3
Fig. 3 (a) Distribution of the RMS amplitude of the 1000 WFs that will be considered in the model. (b) Zernike decomposition of one representative WF that was generated for the simulation (numbering as defined in [32]). (c) Phase reconstruction of the WF shown in (b), as computed for the WFS in the simulation.
Fig. 4
Fig. 4 (a) Eigen values of AO systems composed of the DM97, modeled with an actuator coupling of 15%, and 2 SH sensors with different lenslet arrays. (b) Evolution of the condition number of the systems studied in (a), with respect to the number of filtered modes. (c) Same than (a) but for an actuator coupling of 60% (d) Same than (b) but for the system studied in (c). The arrows indicate the point where eigen values were filtered in our analysis.
Fig. 5
Fig. 5 Sketch of the AO-SLO instrument. LS: Light Source (804 nm); FPC: fiber polarization controller; Col: collimator; Pol: polarizer; PBS: polarizing beam splitter; L1–L2: lenses (200 mm focal length); I: variable aperture iris (focal plane); RS: resonant scanner (pupil plane); L3–L4: lenses (100 mm focal length); GS: galvanometer scanner (pupil plane); L5: lens (150 mm focal length); L6: lens (300 mm focal length); DM: deformable mirror (pupil plane); L7: lens (300 mm focal length); FM: folding mirror; L8: lens (160 mm focal length); QWP: quarter wave plate; BS: cube beam splitter; L9–L10: lenses (50mm focal length); P: Pinhole (focal plane); APD: avalanche photo-diode (focal plane); SH: Shack Hartmann wave-front sensor (pupil plane).
Fig. 6
Fig. 6 Simulation of the AO correction performance of 1000 WFs representative of aberrations introduced by healthy eyes, with DM52 and DM97, in combination with different SH sampling densities. (a) DMs modeled with an actuator coupling of 15%. (b) Actuator coupling of 30%. (c) Actuator coupling of 60%. The error bars show the minimum and maximum residual WF errors. The vertical dashed lines indicate the deduced optimal RLAs. RLAs up to 20 have been simulated, only RLAs up to 12 are shown for better visibility.
Fig. 7
Fig. 7 Comparison between the in-vivo AO-correction performance for the 10 healthy eyes and the simulated performance of the considered AO configurations (the blue error bars show the minimum and maximum residual WF errors).
Fig. 8
Fig. 8 WF measurements and corresponding residual WFs after AO-correction of the left eye of V2 for different RLA configurations. 1st row: WFs measured before correction. 2nd row: Simulated residual WFs after correction of the measured WF. 3rd row: Measured residual WFs, after AO-correction with the instrument.
Fig. 9
Fig. 9 (a) Average of 32 AO-SLO images recorded at the fovea of V2, with a scanning angle of 1.2° × 1.2°. (b) Average of 37 AO-SLO images recorded at at an eccentricity of 14° temporal from the fovea, with a scanning angle of 1.2° × 1.2°.
Fig. 10
Fig. 10 (a) Impact of noise on the performance of the AO correction of an error of 1 μm RMS of focus. The simulation was performed with DM97 (coupling of 30%) and different SH sampling densities. (b) Impact of SH misalignment for the same correction case (the misalignment level is given in fraction of the lenslet size).

Tables (6)

Tables Icon

Table 1 Characteristics of the two studied deformable mirrors.

Tables Icon

Table 2 Boundary amplitudes of the Zernike modes for the generation of the studied set of WFs (based on data from [33]).

Tables Icon

Table 3 Number of filtered modes and condition number for each studied DM configuration.

Tables Icon

Table 4 Characteristics of the two Shack Hartmann wave-front sensors.

Tables Icon

Table 5 SH configuration for the different studied RLAs.

Tables Icon

Table 6 Characteristics of healthy volunteers that were included in the study.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f i ( x , y ) = K e ( x x a c t , i ) 2 / ( 2 s 2 ) e ( y y a c t , i ) 2 / ( 2 s 2 ) ,
f i ( x , y ) x = K s 2 ( x x a c t , i ) e ( x x a c t , i ) 2 / ( 2 s 2 ) e ( y y a c t , i ) 2 / ( 2 s 2 ) ,
f i ( x , y ) y = K s 2 ( y y a c t , i ) e ( x x a c t , i ) 2 / ( 2 s 2 ) e ( y y a c t , i ) 2 / ( 2 s 2 ) .
S S H = M S H α + ϵ S H .
M S H = u Λ v T = > C S H = v Λ 1 u T ,
α = C S H S S H .
P R e s , W F S = P W F S M W F S α ,

Metrics