Abstract

Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo local determination of tissue optical properties: applications to human brain

Frédéric Bevilacqua, Dominique Piguet, Pierre Marquet, Jeffrey D. Gross, Bruce J. Tromberg, and Christian Depeursinge
Appl. Opt. 38(22) 4939-4950 (1999)

In vivo tissue injury mapping using optical coherence tomography based methods

Utku Baran, Yuandong Li, and Ruikang K. Wang
Appl. Opt. 54(21) 6448-6453 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
    [PubMed]
  2. E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
    [PubMed]
  3. C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
    [PubMed]
  4. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
    [PubMed]
  5. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
    [PubMed]
  6. F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
    [PubMed]
  7. Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
    [PubMed]
  8. H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
    [PubMed]
  9. S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
    [PubMed]
  10. B. Vuong, P. Skowron, T. R. Kiehl, M. Kyan, L. Garzia, C. Sun, M. D. Taylor, and V. X. Yang, “Measuring the optical characteristics of medulloblastoma with optical coherence tomography,” Biomed. Opt. Express 6(4), 1487–1501 (2015).
    [PubMed]
  11. C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
    [PubMed]
  12. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [PubMed]
  13. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [PubMed]
  14. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
    [PubMed]
  15. J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
  16. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [PubMed]
  17. C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
    [PubMed]
  18. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
  19. D. Faber, F. van der Meer, M. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [PubMed]
  20. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
    [PubMed]
  21. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [PubMed]
  22. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [PubMed]
  23. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [PubMed]
  24. T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
    [PubMed]
  25. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
    [PubMed]
  26. J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).
  27. T. Naidich, P. Duvernoy, H. M. Delman, B. N. Sorensen, A. G. Kollias and S. S. Haacke, “Internal Architecture of the Brain Stem with Key Axial Section,” in Duvernoy’s Atlas of the Human Brain Stem and Cerebellum (Springer Vienna, 2009).
  28. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [PubMed]
  29. H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
    [PubMed]
  30. P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
    [PubMed]
  31. A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
    [PubMed]
  32. G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
    [PubMed]
  33. V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
    [PubMed]
  34. P. D. H. Braak, “The Three Standard Techniques Used in Architectonics,” in Architectonics of the Human Telencephalic Cortex (Springer Berlin Heidelberg, 1980).
  35. J. Binding, J. Ben Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19(6), 4833–4847 (2011).
    [PubMed]
  36. J. Sun, S. J. Lee, L. Wu, M. Sarntinoranont, and H. Xie, “Refractive index measurement of acute rat brain tissue slices using optical coherence tomography,” Opt. Express 20(2), 1084–1095 (2012).
    [PubMed]
  37. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2013).
    [PubMed]
  38. G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
    [PubMed]

2015 (6)

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

B. Vuong, P. Skowron, T. R. Kiehl, M. Kyan, L. Garzia, C. Sun, M. D. Taylor, and V. X. Yang, “Measuring the optical characteristics of medulloblastoma with optical coherence tomography,” Biomed. Opt. Express 6(4), 1487–1501 (2015).
[PubMed]

S. P. Chong, C. W. Merkle, D. F. Cooke, T. Zhang, H. Radhakrishnan, L. Krubitzer, and V. J. Srinivasan, “Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography,” Opt. Lett. 40(21), 4911–4914 (2015).
[PubMed]

2014 (3)

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[PubMed]

2013 (4)

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2013).
[PubMed]

2012 (2)

J. Sun, S. J. Lee, L. Wu, M. Sarntinoranont, and H. Xie, “Refractive index measurement of acute rat brain tissue slices using optical coherence tomography,” Opt. Express 20(2), 1084–1095 (2012).
[PubMed]

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

2011 (3)

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

J. Binding, J. Ben Arous, J.-F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19(6), 4833–4847 (2011).
[PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

2010 (2)

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

2009 (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[PubMed]

2008 (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

2006 (1)

2005 (2)

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
[PubMed]

2004 (2)

2003 (2)

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).

2002 (2)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[PubMed]

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

1998 (1)

G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
[PubMed]

1994 (2)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[PubMed]

1993 (1)

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

1986 (1)

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).

Aalders, M.

Aalders, M. C.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).

Abosch, A.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Afzal, Y. C.

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

Ahmed, T. H.

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

Akkin, T.

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[PubMed]

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

Al-Qaisi, M. K.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Andersen, C.

Andersen, P.

Andersson-Engels, S.

Arganda-Carreras, I.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Augustinack, J. C.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Bahlmann, K.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Baraznji Sassoon, D. M.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

Barry, S.

Ben Arous, J.

Binder, D. K.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Binding, J.

Biswal, N. C.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Black, A. J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Boas, D. A.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[PubMed]

Boccara, C.

Bonner, R. F.

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

Bouma, B.

Bourdieu, L.

Brewer, M.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Cable, A. E.

Canny, J.

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

Cauberg, E. C. C.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

Chaichana, K. L.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Choi, M. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Chong, S. P.

Coleman, A. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Cooke, D. F.

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

de la Rosette, J. J.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

de Reijke, T. M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

Denk, W.

Dwork, N.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Eberle, M. M.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

Eledrisi, M. S.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

Ellerbee, A. K.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Esenaliev, R. O.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

Faber, D.

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).

Fischl, B.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Frosch, M. P.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Frosz, M.

Fujimoto, J. G.

P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
[PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[PubMed]

Gandjbakhche, A. H.

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

Garcia-Marin, V.

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

Garzia, L.

Gigan, S.

Haenggi, M.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Hansen, P.

Hawken, M. J.

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

Hee, M. R.

Hsiung, P. L.

P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
[PubMed]

Hsu, M. S.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Izatt, J. A.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

Jiang, J. Y.

Kadiri, L. R.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Kiehl, T. R.

Kim, Y.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Knuettel, A. R.

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

Kraftsik, R.

G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
[PubMed]

Krubitzer, L.

Kut, C.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Kyan, M.

Lacy, K. E.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Larin, K. V.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

Lee, S. J.

Léger, J.-F.

Lemij, H. G.

Leuba, G.

G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
[PubMed]

Levitz, D.

Li, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Lovisa, B.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Lurie, K. L.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Magnain, C.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

McVeigh, E. R.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Merkle, C. W.

Mo, J.

Motamedi, M.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

Nambiar, P. R.

P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
[PubMed]

Netoff, T. I.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

O’Connor, D.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Oertel, M. F.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Orchard, G.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Osten, P.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Owen, G. M.

Park, B.

Park, B. H.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

Pauly, J. M.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Pitzschke, A.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Preibisch, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[PubMed]

Quiñones-Hinojosa, A.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Radhakrishnan, H.

Ragan, T.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Raza, S. M.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Reuter, M.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Richardson, T. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Rodriguez, C. L. R.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Rodriguez, F. J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Saalfeld, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[PubMed]

Saini, K.

G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
[PubMed]

Sanders, M.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Sarntinoranont, M.

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

Seung, H. S.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Seydoux, O.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Sikora, U.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Skowron, P.

Smith, G. T.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

Srinivasan, V. J.

Stigen, T. W.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Sun, C.

Sun, J.

Sutin, J.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Swanson, E. A.

Swartling, J.

Szu, J. I.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Taranda, J.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Tardy, Y.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Taylor, M. D.

Tearney, G.

Theer, P.

Thrane, L.

Tomancak, P.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[PubMed]

Uddin, A.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Valanciunaite, J.

van der Meer, F.

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

van Leeuwen, T.

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).

Venkataraju, K. U.

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Vermeer, K. A.

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

Visser, M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

Vuong, B.

Wachinger, C.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Wagnières, G.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Wang, H.

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Wang, R. K.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[PubMed]

Wang, T.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Wang, X.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Wang, Y.

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Weda, J. J. A.

Wedeen, V. J.

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Wu, L.

Wu, W.

Xi, J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Xie, H.

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

Yang, V. X.

Yang, Y.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Yaseen, M. A.

Ye, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Yun, S.

Zellweger, M.

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

Zhang, T.

Zhu, J.

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

Zhu, Q.

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

Bioinformatics (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[PubMed]

Biomed. Opt. Express (2)

Diabetes Care (1)

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring With Optical Coherence Tomography: A Pilot Study In Human Subjects,” Diabetes Care 25(12), 2263–2267 (2002).
[PubMed]

Exp. Neurol. (1)

G. Leuba, R. Kraftsik, and K. Saini, “Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases,” Exp. Neurol. 152(2), 278–291 (1998).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).

IEEE Trans. Med. Imaging (2)

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[PubMed]

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, Depth-Resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data,” IEEE Trans. Med. Imaging 34(12), 2592–2602 (2015).
[PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986).

J. Biomed. Opt. (6)

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20(12), 121314 (2015).
[PubMed]

Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16(9), 090504 (2011).
[PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[PubMed]

P. L. Hsiung, P. R. Nambiar, and J. G. Fujimoto, “Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 10(6), 064033 (2005).
[PubMed]

A. Pitzschke, B. Lovisa, O. Seydoux, M. Haenggi, M. F. Oertel, M. Zellweger, Y. Tardy, and G. Wagnières, “Optical properties of rabbit brain in the red and near-infrared: changes observed under in vivo, postmortem, frozen, and formalin-fixated conditions,” J. Biomed. Opt. 20(2), 25006 (2015).
[PubMed]

J. Comp. Neurol. (1)

V. Garcia-Marin, T. H. Ahmed, Y. C. Afzal, and M. J. Hawken, “Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human,” J. Comp. Neurol. 521(1), 130–151 (2013).
[PubMed]

J. Opt. Soc. Am. A (1)

Nat. Methods (1)

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods 9(3), 255–258 (2012).
[PubMed]

Neuroimage (3)

H. Wang, J. Zhu, and T. Akkin, “Serial optical coherence scanner for large-scale brain imaging at microscopic resolution,” Neuroimage 84, 1007–1017 (2014).
[PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[PubMed]

C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. A. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” Neuroimage 84, 524–533 (2014).
[PubMed]

Neurophotonics (1)

C. L. R. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[PubMed]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[PubMed]

Proc. SPIE (1)

J. M. Schmitt, A. R. Knuettel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).

Sci. Transl. Med. (1)

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[PubMed]

Skin Res. Technol. (1)

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Skin Res. Technol. 19(1), 10–19 (2013).
[PubMed]

Other (2)

T. Naidich, P. Duvernoy, H. M. Delman, B. N. Sorensen, A. G. Kollias and S. S. Haacke, “Internal Architecture of the Brain Stem with Key Axial Section,” in Duvernoy’s Atlas of the Human Brain Stem and Cerebellum (Springer Vienna, 2009).

P. D. H. Braak, “The Three Standard Techniques Used in Architectonics,” in Architectonics of the Human Telencephalic Cortex (Springer Berlin Heidelberg, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Normalized sensitivity roll-off of the SD-OCT system (blue circles) together with the fitting function H( z ) (solid black line). Note that each pixel on the x-axis corresponds to a depth of 2.9 μm in water.

Fig. 2
Fig. 2

Depth profiles of the microsphere phantom at different focus depths (a) and with different concentrations (b). a) μ s = 4.3mm−1, the focus depths z f at 50 μm, 150 μm, 250 μm and 350 μm, respectively. b) z f = 150 μm, expected scattering coefficients are 10.7 mm−1, 8.5 mm−1, 6.4 mm−1, 4.3 mm−1, and 2.1 mm−1, respectively. The dashed blue curves are averaged depth-profile from 5000 A-lines, and the solid black curves are the fitting functions.

Fig. 3
Fig. 3

An example of cross sectional image for the primary visual cortex (a) and the curve fitting for the depth profiles (b). Scale bar: horizontal, 300 μm; vertical, 100 μm. The arrows in (a) indicate the position of the depth profiles (red) and fitting (black) shown in (b). L2/3: layer 2/3; WM: white matter. The zero depth in (b) indicates the location of the tissue surface.

Fig. 4
Fig. 4

Estimation of a) the initial focus depth ( z f0 ) and b) the effective Rayleigh range ( z Rs ) as a function of experimentally set focus depth for 5 sample phantoms.

Fig. 5
Fig. 5

Correlation coefficient of the fitting parameters μ s , μ b ' , z f and z Rs for the microsphere suspensions at five concentrations.

Fig. 6
Fig. 6

The scattering coefficients estimated for the microsphere samples with five different concentrations. The curve shows the mean of the 250 observations and the error bar indicates the standard deviation. The expected scattering coefficients calculated by Mie theory are 2.1 mm−1, 4.3 mm−1, 6.4 mm−1, 8.5 mm−1, and 10.7 mm−1.

Fig. 7
Fig. 7

The optical contrast maps of AIP, μ s and μ b ' demonstrate the laminar structure of the primary visual cortex in the human brain sample (a). The corresponding laminar profiles were obtained by the averaging the image intensity along the x-axis and plotted on the left side of individual images in (a), and overlaid in a single plot in (b). L1-L6 indicates the six cortical layers and WM indicates the white matter region. The black arrow in (a) and the gray shadow in (b) indicate the location of a novel structure shown by the optical contrasts.

Fig. 8
Fig. 8

Comparing the scattering coefficient map of the laminar structures in the primary visual cortex imaged by a low NA 5x and higher NA 10x objective. (a) The scattering coefficient map with a 5x objective lens. Scale bar: 400 μm. (b) Overlaid laminar profiles of the scattering coefficient obtained by the 10x water immersion objective (higher NA) and the 5x objective lens (lower NA).

Fig. 9
Fig. 9

The AIP, scattering coefficient ( μ s ), back-scattering ( μ b ' ) and relative back-scattering ratio (r’) maps of a horizontal human midbrain section rotated by 30° counter-clockwise. ROIs: 1, cerebral peduncles; 2, substantia nigra; 3, red nucleus; 4, oculomotor nucleus; 5, periaqueductal gray; 6, fasciculus. Coordinates: A, anterior; P, posterior; M, medial; L, lateral. Scale bar: 2.5 mm. Note that the scales for I 0 and g’ are arbitrary as the backscattering coefficient units are not calibrated.

Fig. 10
Fig. 10

Zoomed-in maps of μ s , μ b ' and R2 for the regions of cerebral peduncles and substantia nigra in the midbrain. The location of the regions is indicated by the dashed rectangular box on AIP of Fig. 9. The yellow circles indicate the clustered neuromelanin pigmented neurons in the substantia nigra manifested on the μ b ' and MIP map. The rectangle boxes show zoomed-in clusters.

Tables (2)

Tables Icon

Table 1 Specifications of the phantom samples

Tables Icon

Table 2 Estimated focus depth set at the sample surface for the phantom samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A( z )= ηeτ i P 0 2hv R(z)
R( z )= μ b exp(2 μ s z)h(z)
h( z )= 1 1+ ( z z f n z R ) 2 = 1 1+ ( z z f z Rs ) 2