Abstract

We demonstrate a side-view endomicroscope using a monolithic 3-axis scanner placed in the post-objective position that performs either tilt or piston motion to achieve either optical scan angles >10° or large vertical displacements, respectively. This configuration allows for scaling down of instrument dimensions for high maneuverability and accurate positioning in vivo. Images exceeded either 700 × 600 μm2 in the horizontal plane or vertical depths of 200 μm. Resolution of 1.19 and 3.46 μm was obtained in the horizontal and oblique planes, respectively. Optical sections were collected from dysplastic colonic epithelium in vivo in mice that express tdTomato at 10 Hz to visualize individual cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Axial beam scanning in multiphoton microscopy with MEMS-based actuator

Xiyu Duan, Haijun Li, Xue Li, Kenn R. Oldham, and Thomas D. Wang
Opt. Express 25(3) 2195-2205 (2017)

Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging

Haijun Li, Xiyu Duan, Zhen Qiu, Quan Zhou, Katsuo Kurabayashi, Kenn R. Oldham, and Thomas D. Wang
Opt. Express 24(3) 2145-2155 (2016)

MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon

Xiyu Duan, Haijun Li, Zhen Qiu, Bishnu P. Joshi, Asha Pant, Arlene Smith, Katsuo Kurabayashi, Kenn R. Oldham, and Thomas D. Wang
Biomed. Opt. Express 6(8) 3074-3083 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol. 14(3), 141–153 (2014).
    [PubMed]
  2. D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
    [PubMed]
  3. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
    [PubMed]
  4. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [PubMed]
  5. K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).
  6. H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
    [PubMed]
  7. F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68, 349–355 (2003).
  8. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [PubMed]
  9. T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
    [PubMed]
  10. N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
    [PubMed]
  11. J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
    [PubMed]
  12. L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
    [PubMed]
  13. B. P. Joshi and T. D. Wang, “Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging,” Cancers (Basel) 2(2), 1251–1287 (2010).
    [PubMed]
  14. M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
    [PubMed]
  15. S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
    [PubMed]
  16. C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
    [PubMed]
  17. A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
    [PubMed]
  18. A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
    [PubMed]
  19. V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
    [PubMed]
  20. P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
    [PubMed]
  21. J. Ahn, K. Choe, T. Wang, Y. Hwang, E. Song, K. H. Kim, and P. Kim, “In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy,” Biomed. Opt. Express 6(10), 3963–3972 (2015).
    [PubMed]
  22. X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
    [PubMed]
  23. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
    [PubMed]

2016 (2)

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

2015 (3)

J. Ahn, K. Choe, T. Wang, Y. Hwang, E. Song, K. H. Kim, and P. Kim, “In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy,” Biomed. Opt. Express 6(10), 3963–3972 (2015).
[PubMed]

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

2014 (2)

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol. 14(3), 141–153 (2014).
[PubMed]

2013 (1)

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

2012 (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

2010 (6)

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

B. P. Joshi and T. D. Wang, “Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging,” Cancers (Basel) 2(2), 1251–1287 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

2008 (2)

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

2007 (1)

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

2004 (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

2003 (2)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[PubMed]

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68, 349–355 (2003).

1998 (1)

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

1995 (1)

Adams, S. G.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Ahn, J.

Akyol, A.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Anlauf, M.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Artis, D.

L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol. 14(3), 141–153 (2014).
[PubMed]

Aslanian, H. R.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Bao, H.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Becker, V.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

Brandi, L.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Chang, K. J.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Chaudoir, C. S.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Chen, Z.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Cho, K. R.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Choe, K.

Chung, E.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Delaney, P.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Deliolanis, N. C.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

Downie, G. H.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Du, D.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Duan, X.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Fearon, E. R.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Ferguson, D. O.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Foersch, S.

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Fottner, C.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Frimberger, E.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Fukumura, D.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Galle, P. R.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Genet, M.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Giovannini, M.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Goetz, M.

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Greenson, J. K.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Hart, J.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Hartwell, P. G.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Hinoi, T.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Holladay, R. C.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Huang, Q.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Hung, K. E.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Hwang, J. H.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Hwang, Y.

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

Jain, R. K.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Jamil, L. H.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Jia, L.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Joshi, B. P.

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

B. P. Joshi and T. D. Wang, “Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging,” Cancers (Basel) 2(2), 1251–1287 (2010).
[PubMed]

Kasmieh, R.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

Kiesslich, R.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Kim, K. H.

Kim, P.

J. Ahn, K. Choe, T. Wang, Y. Hwang, E. Song, K. H. Kim, and P. Kim, “In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy,” Biomed. Opt. Express 6(10), 3963–3972 (2015).
[PubMed]

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Klöppel, G.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Konda, V. J.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Kucherlapati, R.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Kuick, R.

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Kurabayashi, K.

Laemmel, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Laermer, F.

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68, 349–355 (2003).

Le Gargasson, J. F.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Le Goualher, G.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Li, H.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

Li, X.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Liang, W.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Liu, L.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Lo, S. K.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Lu, X.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

MacDonald, N. C.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

Meining, A.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Mettler, E.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Miller, S. A.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Mizoguchi, A.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Neurath, M. F.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Ntziachristos, V.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[PubMed]

Oldham, K. R.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

Owens, S. R.

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Pant, A.

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Perchant, A.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Peterson, L. W.

L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol. 14(3), 141–153 (2014).
[PubMed]

Prinz, C.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Qiu, Z.

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Rakic, A. D.

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

Saunders, M. D.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Schirrmacher, E.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Schirrmacher, R.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Schmid, R. M.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Schreckenberger, M.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Shah, K.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

Siddiqui, U. D.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Song, E.

Strand, D.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Strogatz, S. H.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Tannous, B. A.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

Theisen, B. K.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Turbat-Herrera, E. A.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Turner, K. L.

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Urban, A.

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68, 349–355 (2003).

Vicaut, E.

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Vieth, M.

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

Von Delius, S.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Von Weyhern, C. H.

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Waldner, M. J.

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

Wallace, M. B.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Wang, E.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Wang, T.

Wang, T. D.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

B. P. Joshi and T. D. Wang, “Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging,” Cancers (Basel) 2(2), 1251–1287 (2010).
[PubMed]

Waxman, I.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Weber, M. M.

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[PubMed]

Wellikoff, A. S.

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Williams, B. O.

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Wroblewski, K.

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Wu, X.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Wurdinger, T.

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

Xie, H.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Xu, F.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Yamashita, H.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Yu, L.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Yuan, H.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Yun, S. H.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Zhang, C.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Zhang, F.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Zhang, X.

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Zhang, Z.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Zhou, J.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Zhou, Q.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

H. Li, X. Duan, Z. Qiu, Q. Zhou, K. Kurabayashi, K. R. Oldham, and T. D. Wang, “Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging,” Opt. Express 24(3), 2145–2155 (2016).
[PubMed]

Zhu, X.

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Ziebart, A.

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Cancer Res. (1)

T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007).
[PubMed]

Cancers (Basel) (1)

B. P. Joshi and T. D. Wang, “Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging,” Cancers (Basel) 2(2), 1251–1287 (2010).
[PubMed]

Clin. Gastroenterol. Hepatol. (1)

A. Meining, E. Frimberger, V. Becker, S. Von Delius, C. H. Von Weyhern, R. M. Schmid, and C. Prinz, “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clin. Gastroenterol. Hepatol. 6(9), 1057–1060 (2008).
[PubMed]

Clin. Transl. Gastroenterol. (1)

J. Zhou, B. P. Joshi, X. Duan, A. Pant, Z. Qiu, R. Kuick, S. R. Owens, and T. D. Wang, “EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging,” Clin. Transl. Gastroenterol. 6(7), e101 (2015).
[PubMed]

Dev. Cell (1)

D. Du, F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen, “The tight junction protein, occludin, regulates the directional migration of epithelial cells,” Dev. Cell 18(1), 52–63 (2010).
[PubMed]

Endocrinology (1)

C. Fottner, E. Mettler, M. Goetz, E. Schirrmacher, M. Anlauf, D. Strand, R. Schirrmacher, G. Klöppel, P. Delaney, M. Schreckenberger, P. R. Galle, M. F. Neurath, R. Kiesslich, and M. M. Weber, “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology 151(5), 2179–2188 (2010).
[PubMed]

Endoscopy (1)

V. J. Konda, A. Meining, L. H. Jamil, M. Giovannini, J. H. Hwang, M. B. Wallace, K. J. Chang, U. D. Siddiqui, J. Hart, S. K. Lo, M. D. Saunders, H. R. Aslanian, K. Wroblewski, and I. Waxman, “A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance,” Endoscopy 45(12), 1006–1013 (2013).
[PubMed]

Gastroenterology (1)

M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010).
[PubMed]

Gut (1)

S. Foersch, R. Kiesslich, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and M. Goetz, “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut 59(8), 1046–1055 (2010).
[PubMed]

J. Biomed. Opt. (1)

N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008).
[PubMed]

J. Vasc. Res. (1)

E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, “Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy,” J. Vasc. Res. 41(5), 400–411 (2004).
[PubMed]

Microelectron. Eng. (1)

F. Laermer and A. Urban, “Challenges, developments and applications of silicon deep reactive ion etching,” Microelectron. Eng. 67–68, 349–355 (2003).

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[PubMed]

Nat. Methods (1)

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[PubMed]

Nat. Rev. Immunol. (1)

L. W. Peterson and D. Artis, “Intestinal epithelial cells: regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol. 14(3), 141–153 (2014).
[PubMed]

Nature (1)

K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, “Five parametric resonances in a microelectromechanical system,” Nature 396, 149–152 (1998).

Opt. Express (1)

Respirology (1)

A. S. Wellikoff, R. C. Holladay, G. H. Downie, C. S. Chaudoir, L. Brandi, and E. A. Turbat-Herrera, “Comparison of in vivo probe-based confocal laser endomicroscopy with histopathology in lung cancer: A move toward optical biopsy,” Respirology 20(6), 967–974 (2015).
[PubMed]

Sci. Rep. (1)

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6, 37315 (2016).
[PubMed]

Sens. Actuators A Phys. (1)

L. Liu, E. Wang, X. Zhang, W. Liang, X. Li, and H. Xie, “MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan,” Sens. Actuators A Phys. 215(15), 89–95 (2014).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of imaging system. Details are provided in text. Key: DM – dichroic mirror, M – mirror, FM – flip mirror, SMF – single mode fiber, L – lens, BPF – band pass filter, PMT – photomultiplier tube.

Fig. 2
Fig. 2

a) Ray trace diagram shows mirror M2 located in post-objective position of focusing optics (L2-L3). b-d) Simulation results for focal spot size over axial range ( + 105 to −105 μm) of M2. FOV in e) horizontal and f) projection of vertical plane onto L4.

Fig. 3
Fig. 3

a) 3-axis scanner provides either lateral or axial motion to direct beam through solid immersion lens (L4). b) Angular deflection of M2 results in 213 µm lateral displacement, while axial translation of M2 produces 200 µm vertical displacement. Combined motion produces 292 µm travel in oblique plane.

Fig. 4
Fig. 4

a) Reflector with dimensions of 1800 and 1200 µm2 is attached to a gimbal frame driven laterally by actuators coupled to b) inner (X-axis) and c) outer (Y-axis) torsional springs. d) U-shaped suspensions displace the reflector out-of-plane in the Z-axis. Isolation trenches are etched in the device layer to electrically isolate the drive signals between the inner and outer comb-drives.

Fig. 5
Fig. 5

a) Schematic shows chip used to support monolithic 3-axis scanner attached to holder. b) Lateral chip dimensions. c) Photo of mounted scanner. d) Aluminum (Al) wires are attached to copper (Cu) pins to deliver drive signals.

Fig. 6
Fig. 6

a) Schematic. CAD drawing shows assembly diagram for packaging of single mode fiber (SMF), stainless steel housing, lenses (L2-L4), and scanner (M2). b) Photo of assembled instrument. c) Reflectance image collected from standard target (USAF 1951) shows lateral resolution of ∼2 μm.

Fig. 7
Fig. 7

Drive signals with either an upsweep or downsweep in frequency is used to characterize the scanner response in the a) X- and b) Y-axes.

Fig. 8
Fig. 8

a) Response of monolithic 3-axis scanner in Z-axes. Resolution of b) 1.19 and c) 3.48 μm was measured in horizontal and oblique plane, respectively, using metric of 10%-90% of maximum intensity from a knife-edge target.

Fig. 9
Fig. 9

Reflectance images collected from phantom targets show a) horizontal FOV of 700 × 600 μm2 and b) vertical depth of 200 µm. Scan patterns in c) horizontal and d) oblique plane projected on flat surface of SIL (L4) are shown.

Fig. 10
Fig. 10

a,b) Individual optical sections are collected in the oblique plane from embedded 15 μm diameter fluorescent beads (arrows) using λex = 660 nm. c) Stack of oblique images is used to construct 3D volumetric image.

Fig. 11
Fig. 11

Using λex = 561 nm, fluorescence images collected in vivo in the oblique plane from a) normal and b) dysplastic colonic epithelium from mouse colonic epithelium expressing tdTomato are shown. Images collected ex vivo in horizontal plane at depths of Z = c) 20 and d) 60 μm are shown. Electronically magnified ROIs with dimensions of 80 × 80 μm2 (inset) clarify individual cells. Key: crypt (arrow), lumen (l), goblet cells (g), cytoplasm (c), inflammatory cells (arrowhead), lamina propria (lp).

Fig. 12
Fig. 12

Fluorescence images are collected ex vivo in the horizontal (XY) plane from a) duodenum, b) ileum, c) liver, and d) kidney to demonstrate the broad applicability of this instrument to identify single cells in other mouse organs. Key: crypt (arrow), goblet cells (g), lumen (l), lamina propria (lp), enterocytes (e), sinusoids (s), central vein (c), portal triads (t), and collecting tubules (ct) in the renal cortex.

Fig. 13
Fig. 13

NIR images of EGFR expression. Fluorescence images are collected ex vivo from mouse colonic epithelium ~2 hours after systemic injection of a Cy5.5-labeled EGFR peptide. Oblique images of a) normal and b) dysplasia. c) A 3D volumetric image is generated from combining a stack of oblique images collected from dysplasia.

Tables (1)

Tables Icon

Table 1 Parameters used to operate monolithic 3axis scanner, including drive frequencies fX and fY/Z in the X-, Y-, and Z- axes, show tradeoffs between image FOV and frame rate (Hz).