Abstract

Spectrally-resolved imaging techniques are becoming central to the investigation of bio-samples. In this paper, we demonstrate the use of a WIFI-camera as a detection module to assemble a pencil-like imaging spectrometer, which weighs only 140 g and has a size of 3.1 cm in diameter and 15.5 cm in length. The spectrometer is standalone, and works wirelessly. A smartphone or network computer can serve as the data receiver and processor. The wavelength resolution of the spectrometer is about 17 nm, providing repeatable measurements of spatial two-dimensional images at various wavelengths for various bio-samples, including bananas, meat, and human hands. The detected spectral range is 400 nm - 675 nm and a white LED array lamp is selected as the light source. Based on the detected spectra, we can monitor the impacts of chlorophyll, myoglobin, and hemoglobin on bananas, pork, and human hands, respectively. For human hand scanning, a 3D spectral image data cube, which exhibits excellent signal to background noise ratio, can be obtained within 16 sec. We envisage that the adaptation of imaging spectrometer devices to the widely-accepted smartphone technology will help to carry out on-site studies in various applications. Besides, our pencil-like imaging spectrometer is cost-effective (<$300) and easy to assemble. This portable imaging spectrometer can facilitate the collection of large amounts of spectral image data. With the help of machine learning, we can realize object recognition based on spectral classification in the future.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk
Opt. Express 18(14) 14330-14344 (2010)

Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser

Michael A. Golub, Amir Averbuch, Menachem Nathan, Valery A. Zheludev, Jonathan Hauser, Shay Gurevitch, Roman Malinsky, and Asaf Kagan
Appl. Opt. 55(3) 432-443 (2016)

Demonstration of a high-speed nonscanning imaging spectrometer

M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker
Opt. Lett. 22(16) 1271-1273 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. Ozcan, “Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,” Lab Chip 14(17), 3187–3194 (2014).
    [PubMed]
  2. S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based Multispectral Imaging: System Development and Potential for Mobile Skin Diagnosis,” Biomed. Opt. Express 7(12), 5294–5307 (2016).
    [PubMed]
  3. K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5(11), 3792–3806 (2014).
    [PubMed]
  4. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
    [PubMed]
  5. A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
    [PubMed]
  6. Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
    [PubMed]
  7. E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).
  8. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [PubMed]
  9. I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
    [PubMed]
  10. B. C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).
    [PubMed]
  11. D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
    [PubMed]
  12. J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
    [PubMed]
  13. E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).
  14. C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35(1), 74–77 (1996).
    [PubMed]
  15. H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
    [PubMed]
  16. H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy,” Chlorophylls and carotenoids: measurement and characterisation by UV-vis. Current protocols in food analytical chemistry (CPFA), Suppl. 1. John Wiley, New York, pp F4.3.1–F 4.3.8 (2001).
  17. M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).
  18. W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
    [PubMed]
  19. Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
    [PubMed]
  20. R. van Veen, H. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” in Proc. OSA Annu. Biomed Topical Meeting, 2004.
  21. S. Prahl, Optical absorption of haemoglobin, 1999, http://omlc.ogi.edu/spectra/hemoglobin/summary.html
  22. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [PubMed]
  23. G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
    [PubMed]
  24. F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).
  25. H. Kim, O. Awofeso, S. Choi, Y. Jung, and E. Bae, “Colorimetric analysis of saliva-alcohol test strips by smartphone-based instruments using machine-learning algorithms,” Appl. Opt. 56(1), 84–92 (2017).
  26. M. Solmaz, “Smartphone Based Colorimetric Detection via Machine Learning,” Anal. Chem. 13, 2263 (2017).

2017 (2)

2016 (2)

2015 (1)

2014 (4)

K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5(11), 3792–3806 (2014).
[PubMed]

A. Ozcan, “Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,” Lab Chip 14(17), 3187–3194 (2014).
[PubMed]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

2011 (1)

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

2010 (2)

Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
[PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

2006 (1)

2005 (2)

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

2003 (1)

M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).

2002 (1)

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

2000 (1)

1996 (2)

C. J. Sansonetti, M. L. Salit, and J. Reader, “Wavelengths of spectral lines in mercury pencil lamps,” Appl. Opt. 35(1), 74–77 (1996).
[PubMed]

E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).

1994 (1)

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

1949 (1)

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

Ahmad, Z.

Aikio, M.

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Andreasson, K. I.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Antaris, A. L.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Armani, A. M.

Atochin, D. N.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Awofeso, O.

Bae, E.

Bowen, W. J.

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

Cai, F.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Chang, J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Chen, C.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Chen, J.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Cheng, F.

Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
[PubMed]

Cho, D.

Choi, S.

Chourpa, I.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Cohen-Jonathan, S.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Cunningham, B. T.

Dai, H.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Das, A. J.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
[PubMed]

Davis, C. O.

Diao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Douziech-Eyrolles, L.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Dubois, P.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Fan, Y. X.

Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
[PubMed]

Farkas, D. L.

Fouquenet, J. F.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Gao, B. C.

Gitelson, A. A.

M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).

Gossage, K. W.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

Han, S.

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

He, S.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Herrala, E.

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Hong, G.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Hoyt, C. C.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

Huang, P. L.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Huang, Z.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Hwang, J. Y.

Hyvarinen, T. S.

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Isikman, S. O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Jang, J. E.

Je, M.

Jung, Y.

Kim, H.

Kim, J.

Kim, M.

Kim, S.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Kothari, I.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
[PubMed]

Kuo, C. J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Lammasniemi, J.

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Lee, B.

Lee, D. H.

Lee, K. S.

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Levenson, R. M.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

Liao, Y. T.

Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
[PubMed]

Li-Chan, E. C. Y.

E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).

Long, K. D.

Mansfield, J. R.

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

Marchais, H.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Merzlyak, M. N.

M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).

Montes, M. J.

Mu, Y.

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Mudanyali, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Ngaboni-Okassa, L.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Okkonen, J. T.

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Osman, A.

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

Ozcan, A.

A. Ozcan, “Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,” Lab Chip 14(17), 3187–3194 (2014).
[PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Oztoprak, C.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Park, J. S.

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Qian, J.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Qudsieh, H. Y. M.

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

Rahman, R. A.

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

Raskar, R.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
[PubMed]

Reader, J.

Regnier, F.

Salit, M. L.

Sansonetti, C. J.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Sencan, I.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Solmaz, M.

M. Solmaz, “Smartphone Based Colorimetric Detection via Machine Learning,” Anal. Chem. 13, 2263 (2017).

Solovchenko, A. E.

M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).

Soucé, M.

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Tseng, D.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Vahala, K. J.

Wahi, A.

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
[PubMed]

Wang, D.

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Wang, Y.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

Yaglidere, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Ye,

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Youn, S.

Yu, H.

Yu, J.

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Yusof, S.

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

Zhang, B.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Zhao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Anal. Chem. (1)

M. Solmaz, “Smartphone Based Colorimetric Detection via Machine Learning,” Anal. Chem. 13, 2263 (2017).

Analyst (Lond.) (1)

I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J. F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, and P. Dubois, “Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy,” Analyst (Lond.) 130(10), 1395–1403 (2005).
[PubMed]

Appl. Opt. (4)

Biomaterials (1)

D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, and Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32(25), 5880–5888 (2011).
[PubMed]

Biomed. Opt. Express (2)

J. Agric. Food Chem. (1)

H. Y. M. Qudsieh, S. Yusof, A. Osman, and R. A. Rahman, “Effect of maturity on chlorophyll, tannin, color, and polyphenol oxidase (PPO) activity of sugarcane juice (Saccharum officinarum Var. Yellow Cane),” J. Agric. Food Chem. 50(6), 1615–1618 (2002).
[PubMed]

J. Biol. Chem. (1)

W. J. Bowen, “The absorption spectra and extinction coefficients of myoglobin,” J. Biol. Chem. 179(1), 235–245 (1949).
[PubMed]

J. Biomed. Opt. (1)

J. R. Mansfield, K. W. Gossage, C. C. Hoyt, and R. M. Levenson, “Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging,” J. Biomed. Opt. 10(4), 41207 (2005).
[PubMed]

Lab Chip (2)

A. Ozcan, “Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,” Lab Chip 14(17), 3187–3194 (2014).
[PubMed]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10(14), 1787–1792 (2010).
[PubMed]

Laser Photonics Rev. (1)

F. Cai, J. Yu, J. Qian, and Y. Wang, ZJ. Chen, Z. Huang, Ye, and S. He, “Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging,” Laser Photonics Rev. 8(6), 865–874 (2014).

Meat Sci. (1)

Y. T. Liao, Y. X. Fan, and F. Cheng, “On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy,” Meat Sci. 86(4), 901–907 (2010).
[PubMed]

Nat. Photonics (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[PubMed]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8(9), 723–730 (2014).
[PubMed]

Opt. Lett. (1)

Postharvest Biol. Technol. (1)

M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27(2), 197–211 (2003).

Proc. SPIE (1)

E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammasniemi, “Imaging spectrometer for process industry applications,” Proc. SPIE 2248(33), 33–40 (1994).

Sci. Rep. (1)

A. J. Das, A. Wahi, I. Kothari, and R. Raskar, “Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness,” Sci. Rep. 6, 32504 (2016).
[PubMed]

Trends Food Sci. Technol. (1)

E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci. Technol. 7(11), 361–370 (1996).

Other (3)

R. van Veen, H. Sterenborg, A. Pifferi, A. Torricelli, and R. Cubeddu, “Determination of VIS- NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy,” in Proc. OSA Annu. Biomed Topical Meeting, 2004.

S. Prahl, Optical absorption of haemoglobin, 1999, http://omlc.ogi.edu/spectra/hemoglobin/summary.html

H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy,” Chlorophylls and carotenoids: measurement and characterisation by UV-vis. Current protocols in food analytical chemistry (CPFA), Suppl. 1. John Wiley, New York, pp F4.3.1–F 4.3.8 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the pencil-like imaging spectrometer. Optical elements 1: Imaging lens; 2: slit; 3: doublet lens; 4: prism; 5: grating; (6) prism; 7: CCTV lens; 8: CMOS. The imaging spectrometer can be held like a pencil to scan an object. A white LED array lamp is utilized as the light source, which illuminates the object at an angle of 45 degree. Lights reflected from a line-region (indicated by black dot dash line) on the object (human hand is as an application example in our work) enter the system, which yields a spectral image on the CMOS chip. The spectrum of white LED is also shown as an inset in the lower-left corner of the figure.

Fig. 2
Fig. 2

(a). A photo of the prototype pencil-like imaging spectrometer; the length and diameter are 15.5 cm and 3.1 cm, respectively, and the weight is 140 g. The diffraction image can be transmitted to a smartphone through wireless network. (b). The spectrum of a mercury lamp acquired by the imaging spectrometer. Inset shows the original spectral image. One vertical line of the spectral image was selected to plot the spectral curve. (c). The spectrum of the same mercury lamp acquired by a commercial spectrometer. It was found that the wavelengths for the spectral peaks are consistent with (b).

Fig. 3
Fig. 3

The pencil-like imaging spectrometer was utilized for ripeness testing and myoglobin detection. A white LED array lamp was used as the light source. (a) and (b) show the reflectance spectra from green and ripe bananas, respectively. The green banana exhibited a sharp downward trend at the red light band. (c) and (d) show the reflectance spectra from the muscle and fat parts of pork, respectively. The insets in (c) and (d) illustrate the reflectance around 540 nm range. There is an absorption around 540 nm in (c) due to the myoglobin in the muscle part of pork.

Fig. 4
Fig. 4

(a). Schematic illustration of the 3D spectral image data cube. Herein, the spatial image represents the total reflectance image, see detail in text. The inset show the reflectance intensity line profile denoted by the green dotted rectangle region. (b) and (c) show the reflectance spectra derived from fingertip and palm, respectively; (d). The photo taken during the scanning experiment; (e). The reflected image at the 580 nm band, see more detail in the main text.

Metrics