Abstract

Apertureless scanning near-field optical microscopy (ASNOM) has attracted considerable interest over the past years as a result of its valuable contrast mechanisms and capabilities for optical resolutions in the nanoscale range. However, at this moment the intersections between ASNOM and the realm of bioimaging are scarce, mainly due to data interpretation difficulties linked to the limited body of work performed so far in this field and hence the reduced volume of supporting information. We propose an imaging approach that holds significant potential for alleviating this issue, consisting of correlative imaging of biological specimens using a multimodal system that incorporates ASNOM and confocal laser scanning microscopy (CLSM), which allows placing near-field data into a well understood context of anatomical relevance. We demonstrate this approach on zebrafish retinal tissue. The proposed method holds important implications for the in-depth understanding of biological items through the prism of ASNOM and CLSM data complementarity.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking

Ioan-Catalin Dragoi, Stefan G. Stanciu, Radu Hristu, Henri-George Coanda, Denis E. Tranca, Marius Popescu, and Dinu Coltuc
Biomed. Opt. Express 7(4) 1127-1137 (2016)

Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy

Xiao Shu, Hao Li, Biqin Dong, Cheng Sun, and Hao F. Zhang
Biomed. Opt. Express 8(6) 2851-2865 (2017)

Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

Zahra Nafar, Minshan Jiang, Rong Wen, and Shuliang Jiao
Biomed. Opt. Express 7(9) 3220-3229 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [PubMed]
  2. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [PubMed]
  3. K. König, “Clinical multiphoton tomography,” J. Biophotonics 1(1), 13–23 (2008).
    [PubMed]
  4. E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
    [PubMed]
  5. S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
    [PubMed]
  6. Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
    [PubMed]
  7. M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
    [PubMed]
  8. C. Cremer and U. Birk, “Perspectives in super-resolved fluorescence microscopy: What comes next?” Front. Phys. 4, 11 (2016).
  9. S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).
  10. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
    [PubMed]
  11. D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
    [PubMed]
  12. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math Phys. Eng. Sci. 362(1817), 787–805 (2004).
    [PubMed]
  13. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [PubMed]
  14. S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).
  15. D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
    [PubMed]
  16. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
    [PubMed]
  17. J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
    [PubMed]
  18. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
    [PubMed]
  19. D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
    [PubMed]
  20. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
    [PubMed]
  21. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
    [PubMed]
  22. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
  23. D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
    [PubMed]
  24. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(Pt 1), 94–99 (2001).
    [PubMed]
  25. T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).
  26. O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).
  27. J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
    [PubMed]
  28. J. M. Mateos, G. Barmettler, J. Doehner, I. O. Naharros, B. Guhl, S. C. F. Neuhauss, A. Kaech, R. Bachmann-Gagescu, and U. Ziegler, “Correlative Super-resolution and Electron Microscopy to Resolve Protein Localization in Zebrafish Retina,” J. Vis. Exp. in production (2017).
  29. J. Wan and D. Goldman, “Retina regeneration in zebrafish,” Curr. Opin. Genet. Dev. 40, 41–47 (2016).
    [PubMed]
  30. C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
    [PubMed]
  31. D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
    [PubMed]
  32. T. Sarna, “Properties and function of the ocular melanin-a photobiophysical view,” J. Photochem. Photobiol. B 12(3), 215–258 (1992).
    [PubMed]
  33. D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.
  34. D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
    [PubMed]
  35. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
    [PubMed]
  36. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [PubMed]
  37. H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).
  38. A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
    [PubMed]
  39. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
    [PubMed]
  40. U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
    [PubMed]

2017 (2)

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

2016 (7)

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

J. Wan and D. Goldman, “Retina regeneration in zebrafish,” Curr. Opin. Genet. Dev. 40, 41–47 (2016).
[PubMed]

C. Cremer and U. Birk, “Perspectives in super-resolved fluorescence microscopy: What comes next?” Front. Phys. 4, 11 (2016).

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

2015 (2)

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

2014 (1)

2013 (3)

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[PubMed]

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

2012 (1)

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

2011 (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

2010 (1)

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

2009 (2)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

2008 (3)

K. König, “Clinical multiphoton tomography,” J. Biophotonics 1(1), 13–23 (2008).
[PubMed]

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
[PubMed]

2007 (2)

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

2006 (3)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).

2005 (1)

2004 (2)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math Phys. Eng. Sci. 362(1817), 787–805 (2004).
[PubMed]

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
[PubMed]

2001 (3)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
[PubMed]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(Pt 1), 94–99 (2001).
[PubMed]

D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
[PubMed]

2000 (1)

T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).

1992 (1)

T. Sarna, “Properties and function of the ocular melanin-a photobiophysical view,” J. Photochem. Photobiol. B 12(3), 215–258 (1992).
[PubMed]

Akinduro, O.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Albrecht, T. R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Algra, R. E.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Antipov, A.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

Bacskai, B. J.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Bakkers, E. P.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Barmettler, G.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Bates, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Bewersdorf, J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Birk, U.

C. Cremer and U. Birk, “Perspectives in super-resolved fluorescence microscopy: What comes next?” Front. Phys. 4, 11 (2016).

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Bonnet, D.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Booth, M. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Brehm, M.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

Cheng, J.-X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Chuvilin, A.

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

Cordelières, F. P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Cremer, C.

C. Cremer and U. Birk, “Perspectives in super-resolved fluorescence microscopy: What comes next?” Front. Phys. 4, 11 (2016).

Cuevas, J.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

de Calignon, A.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Dellacasa, E.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

Delori, F. C.

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[PubMed]

Diedenhofen, S. L.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Doehner, J.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Duarte, D.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Enderlein, J.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Engelhardt, A. P.

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[PubMed]

Fiebig, B.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Fontaine-Aupart, M.-P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Fort, E.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Foster, K.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Frommer, J.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Garcia-Alloza, M.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Glickman, R. D.

D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
[PubMed]

Goldgeier, M.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Goldman, D.

J. Wan and D. Goldman, “Retina regeneration in zebrafish,” Curr. Opin. Genet. Dev. 40, 41–47 (2016).
[PubMed]

González, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Gribben, J.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Guhl, B.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Harrison, S. J.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Hauer, B.

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[PubMed]

Hawkins, E. D.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Heintzmann, R.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Hell, S. W.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Hess, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Hillenbrand, R.

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math Phys. Eng. Sci. 362(1817), 787–805 (2004).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
[PubMed]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
[PubMed]

Holtzman, D. M.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Hristu, R.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

Hu, D. N.

D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
[PubMed]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).

Huber, A. J.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

Hyman, B. T.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Idigoras, O.

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

Jaen, P.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Jahng, J.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Jakob, D. S.

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

Johnstone, R. W.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Kaech, A.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Keilhauer, C. N.

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[PubMed]

Keilmann, F.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math Phys. Eng. Sci. 362(1817), 787–805 (2004).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
[PubMed]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
[PubMed]

Kellner, S.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Kellner, U.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Khorshed, R. A.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Kiessling, F.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Knoll, B.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
[PubMed]

Koberling, F.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

Koenig, M.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Koenigsknecht-Talboo, J.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

König, K.

K. König, “Clinical multiphoton tomography,” J. Biophotonics 1(1), 13–23 (2008).
[PubMed]

Lessard, G. A.

T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).

Lévêque-Fort, S.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Liu, Y.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Lo Celso, C.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Martínez-Corral, M.

Mateos, J. M.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Mayo, M. L.

D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
[PubMed]

Megens, R. T. A.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Meyer-Luehmann, M.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Moal, E. L.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Morrison, W.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Nori, S.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Nowak, D.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Nowicka, M.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).

Park, S.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Passaro, D.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Pastorino, L.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Potma, E.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Prada, C.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Purton, L. E.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Quach, H.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Quake, S. R.

T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).

Rademakers, T.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Ricolleau, C.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Rius-Díaz, F.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Rivas, J. G.

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Robinson, M. D.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Ros, R.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Rothery, S.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Rozkalne, A.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Ruether, K.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Ruggiero, C.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

Ruivo, N.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Ruiz, R.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Saavedra, G.

Sahl, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Sánchez-Ortiga, E.

Sanders, D. P.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Sandoghdar, V.

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(Pt 1), 94–99 (2001).
[PubMed]

Sardar, D. K.

D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
[PubMed]

Sarna, T.

D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
[PubMed]

T. Sarna, “Properties and function of the ocular melanin-a photobiophysical view,” J. Photochem. Photobiol. B 12(3), 215–258 (1992).
[PubMed]

Schmidt, K.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Schulz, O.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Scott, M. K.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Shtengel, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Simon, J. D.

D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
[PubMed]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Spires-Jones, T. L.

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Stanciu, G. A.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

Stanciu, S. G.

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

Stiegler, J. M.

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Stoichita, C.

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[PubMed]

Straszkowski, L.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Taubner, T.

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
[PubMed]

Tena-Zaera, R.

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

Tinnefeld, P.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Tofail, S. A.

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

Torres, A.

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

Tranca, D. E.

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

D. E. Tranca, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, S. A. Tofail, S. G. Stanciu, R. Hristu, and G. A. Stanciu, “Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy,” Opt. Lett. 41(5), 1046–1049 (2016).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[PubMed]

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

van Zandvoort, M.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Vogt, M.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Waibel, M.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Wan, J.

J. Wan and D. Goldman, “Retina regeneration in zebrafish,” Curr. Opin. Genet. Dev. 40, 41–47 (2016).
[PubMed]

Wan, L.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Wang, H.

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

Wang, L.

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Ward, A.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Weber, B. H.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Weber, C.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Weinitz, S.

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Westein, E.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Westerman, D. A.

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

Wickramasinghe, H. K.

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Witgen, B. M.

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

Wu, Z.

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Xu, X. G.

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

Yan, H.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Yang, C.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Yang, T.

T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).

Zayats, A. V.

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(Pt 1), 94–99 (2001).
[PubMed]

Zhao, Z.

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Zhuang, X.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

Ziegler, U.

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

AIP Adv. (1)

H. Wang, L. Wang, D. S. Jakob, and X. G. Xu, “Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy,” AIP Adv. 7, 055118 (2017).

Appl. Phys. Lett. (2)

T. Yang, G. A. Lessard, and S. R. Quake, “An apertureless near-field microscope for fluorescence imaging,” Appl. Phys. Lett. 76(3), 378–380 (2000).

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).

Biophys. J. (1)

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[PubMed]

Curr. Opin. Genet. Dev. (1)

J. Wan and D. Goldman, “Retina regeneration in zebrafish,” Curr. Opin. Genet. Dev. 40, 41–47 (2016).
[PubMed]

Eye (Lond.) (1)

U. Kellner, S. Kellner, B. H. Weber, B. Fiebig, S. Weinitz, and K. Ruether, “Lipofuscin- and melanin-related fundus autofluorescence visualize different retinal pigment epithelial alterations in patients with retinitis pigmentosa,” Eye (Lond.) 23(6), 1349–1359 (2009).
[PubMed]

Front. Phys. (1)

C. Cremer and U. Birk, “Perspectives in super-resolved fluorescence microscopy: What comes next?” Front. Phys. 4, 11 (2016).

Invest. Ophthalmol. Vis. Sci. (1)

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci. 47(8), 3556–3564 (2006).
[PubMed]

J. Am. Acad. Dermatol. (1)

S. Nori, F. Rius-Díaz, J. Cuevas, M. Goldgeier, P. Jaen, A. Torres, and S. González, “Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study,” J. Am. Acad. Dermatol. 51(6), 923–930 (2004).
[PubMed]

J. Biomed. Opt. (1)

D. K. Sardar, M. L. Mayo, and R. D. Glickman, “Optical characterization of melanin,” J. Biomed. Opt. 6(4), 404–411 (2001).
[PubMed]

J. Biophotonics (1)

K. König, “Clinical multiphoton tomography,” J. Biophotonics 1(1), 13–23 (2008).
[PubMed]

J. Microsc. (3)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(Pt 1), 77–83 (2001).
[PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(Pt 3), 311–314 (2003).
[PubMed]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc. 202(Pt 1), 94–99 (2001).
[PubMed]

J. Photochem. Photobiol. B (1)

T. Sarna, “Properties and function of the ocular melanin-a photobiophysical view,” J. Photochem. Photobiol. B 12(3), 215–258 (1992).
[PubMed]

J.Phys. D. (1)

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, and P. Tinnefeld, “The 2015 super-resolution microscopy roadmap,” J.Phys. D. 48(44), 443001 (2015).

Mater. Lett. (1)

S. G. Stanciu, D. E. Tranca, C. Ruggiero, G. A. Stanciu, E. Dellacasa, A. Antipov, R. Hristu, and L. Pastorino, “Combined far-field, near-field and topographic imaging of nano-engineered polyelectrolyte capsules,” Mater. Lett. 183, 105–108 (2016).

Methods (1)

Z. Wu, T. Rademakers, F. Kiessling, M. Vogt, E. Westein, C. Weber, R. T. A. Megens, and M. van Zandvoort, “Multi-Photon Microscopy in Cardiovascular Research,” Methods 130, 79–89 (2017).
[PubMed]

Nano Lett. (3)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[PubMed]

J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010).
[PubMed]

Nat. Chem. Biol. (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Nat. Commun. (1)

J. M. Stiegler, R. Tena-Zaera, O. Idigoras, A. Chuvilin, and R. Hillenbrand, “Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires,” Nat. Commun. 3, 1131 (2012).
[PubMed]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[PubMed]

Nat. Photonics (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[PubMed]

Nature (2)

E. D. Hawkins, D. Duarte, O. Akinduro, R. A. Khorshed, D. Passaro, M. Nowicka, L. Straszkowski, M. K. Scott, S. Rothery, N. Ruivo, K. Foster, M. Waibel, R. W. Johnstone, S. J. Harrison, D. A. Westerman, H. Quach, J. Gribben, M. D. Robinson, L. E. Purton, D. Bonnet, and C. Lo Celso, “T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments,” Nature 538(7626), 518–522 (2016).
[PubMed]

M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada, M. Garcia-Alloza, A. de Calignon, A. Rozkalne, J. Koenigsknecht-Talboo, D. M. Holtzman, B. J. Bacskai, and B. T. Hyman, “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease,” Nature 451(7179), 720–724 (2008).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Nanoscopy (1)

O. Schulz, Z. Zhao, A. Ward, M. Koenig, F. Koberling, Y. Liu, J. Enderlein, H. Yan, and R. Ros, “Tip induced fluorescence quenching for nanometer optical and topographical resolution,” Opt. Nanoscopy 2, 1 (2013).

Philos. Trans. A Math Phys. Eng. Sci. (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math Phys. Eng. Sci. 362(1817), 787–805 (2004).
[PubMed]

Photochem. Photobiol. (1)

D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84(3), 639–644 (2008).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[PubMed]

Sci. Adv. (1)

D. Nowak, W. Morrison, H. K. Wickramasinghe, J. Jahng, E. Potma, L. Wan, R. Ruiz, T. R. Albrecht, K. Schmidt, J. Frommer, D. P. Sanders, and S. Park, “Nanoscale chemical imaging by photoinduced force microscopy,” Sci. Adv. 2(3), e1501571 (2016).
[PubMed]

Sci. Rep. (2)

D. E. Tranca, S. G. Stanciu, R. Hristu, C. Stoichita, S. A. Tofail, and G. A. Stanciu, “High-resolution quantitative determination of dielectric function by using scattering scanning near-field optical microscopy,” Sci. Rep. 5, 11876 (2015).
[PubMed]

J. M. Mateos, B. Guhl, J. Doehner, G. Barmettler, A. Kaech, and U. Ziegler, “Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy,” Sci. Rep. 6, 34062 (2016).
[PubMed]

Ultramicroscopy (1)

A. P. Engelhardt, B. Hauer, and T. Taubner, “Visibility of weak contrasts in subsurface scattering near-field microscopy,” Ultramicroscopy 126, 40–43 (2013).
[PubMed]

Other (2)

J. M. Mateos, G. Barmettler, J. Doehner, I. O. Naharros, B. Guhl, S. C. F. Neuhauss, A. Kaech, R. Bachmann-Gagescu, and U. Ziegler, “Correlative Super-resolution and Electron Microscopy to Resolve Protein Localization in Zebrafish Retina,” J. Vis. Exp. in production (2017).

D. E. Tranca, S. G. Stanciu, R. Hristu, B. M. Witgen, and G. A. Stanciu, “Nanoscale mapping of refractive index by using scattering-type Scanning Near-Field Optical Microscopy,” Nanomed. Nanotech. Biol. Med. in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Multimodal system for combined far-field ⬌ near-field imaging. The home-made module positioned above the sample plane is used for s-SNOM imaging, and consists in a Michelson interferometer with the laser beam from one interferometer arm focused onto the tip apex and the other one reflected off a harmonic oscillating reference mirror. The reference beam interferes with the scattered light originated from the near-field of the sample and the interference signal contains the near-field optical information at frequencies n⋅fo ± m⋅M, where fo is the tip’s oscillation frequency, M is the mirror oscillation frequency and n, m are integers. The s-SNOM signal is collected using a lock-in amplifier locked at the n⋅fo ± m⋅M spectral harmonics. Top-righ inset: Scanning Electron Microscopy image of the NSC19/Ti-Pt probe (image courtesy of MikroMasch® AFM probes - www.spmtips.com). The imaging module positioned below the sample plane is used for CLSM imaging and consists in a custom modified commercial system.
Fig. 2
Fig. 2 Zebrafish retina investigated by CLSM, AFM and s-SNOM. To facilitate the localization of the regions imaged with AFM/s-SNOM, the AFM images are overlaid on the CLSM micrograph.
Fig. 3
Fig. 3 Pt/C shadowed zebrafish retina investigated by CLSM, AFM and s-SNOM. To facilitate the localization of the regions imaged with AFM/s-SNOM, the AFM image is overlaid on the CLSM micrograph.

Metrics