Abstract

Breast cancer has become a major cause of death among women. The lifetime risk of a woman developing this disease has been established as one in eight. The most useful way to reduce breast cancer death is to treat the disease as early as possible. The existing methods of early diagnostics of breast cancer are mainly based on screening mammography or Magnetic Resonance Imaging (MRI) periodically conducted at medical facilities. In this paper the authors proposing a new approach for simple breast cancer detection. It is based on skin stimulation by sound waves, illuminating it by laser beam and tracking the reflected secondary speckle patterns. As first approach, plastic balls of different sizes were placed under the skin of chicken breast and detected by the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-vivo NIR autofluorescence imaging of rat mammary tumors

Laure S. Fournier, Vincenzo Lucidi, Kirill Berejnoi, Theodore Miller, Stavros G. Demos, and Robert C. Brasch
Opt. Express 14(15) 6713-6723 (2006)

High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model

Hua Chen, Te-Hsuen Chen, Tzu-Fang Tseng, Jen-Tang Lu, Chung-Chiu Kuo, Shih-Chen Fu, Wen-Jeng Lee, Yuan-Fu Tsai, Yi-You Huang, Eric Y. Chuang, Yuh-Jing Hwang, and Chi-Kuang Sun
Opt. Express 19(22) 21552-21562 (2011)

Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging

Yaliang Yang, Fuhai Li, Liang Gao, Zhiyong Wang, Michael J. Thrall, Steven S. Shen, Kelvin K. Wong, and Stephen T. C. Wong
Biomed. Opt. Express 2(8) 2160-2174 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
    [PubMed]
  2. E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
    [PubMed]
  3. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).
  4. L. Mahoney and A. Csima, “Efficiency of palpation in clinical detection of breast cancer,” Can. Med. Assoc. J. 127(8), 729–730 (1982).
    [PubMed]
  5. L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
    [PubMed]
  6. A. Bleyer and H. G. Welch, “Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence,” N. Engl. J. Med. 367(21), 1998–2005 (2012).
    [PubMed]
  7. T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
    [PubMed]
  8. K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
    [PubMed]
  9. R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
    [PubMed]
  10. E. F. Conant and A. D. Maidment, “Breast cancer imaging,” Sci. Med. (Phila.) 3(1), 22–31 (1996).
  11. R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
    [PubMed]
  12. E. A. Sickles, “Computed tomography scanning, transillumination, and magnetic resonance imaging of the breast,” Recent Results Cancer Res. 105, 31–36 (1987).
    [PubMed]
  13. B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
    [PubMed]
  14. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).
  15. V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
    [PubMed]
  16. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
    [PubMed]
  17. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
  18. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
    [PubMed]
  19. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [PubMed]
  20. R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
    [PubMed]
  21. J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41(28), 6030–6035 (2002).
    [PubMed]
  22. V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4(1), 106–124 (1999).
    [PubMed]
  23. S. S. Ulyanov and V. V. Tuchin, “Use of low-coherence speckled speckles for bioflow measurements,” Appl. Opt. 39(34), 6385–6389 (2000).
    [PubMed]
  24. S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).
  25. Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
    [PubMed]
  26. T. Sirkis, Y. Beiderman, S. Agdarov, Y. Beiderman, and Z. Zalevsky, “Monitoring blood vital bio signs using secondary speckle patterns,” Opt. Express 24(24), 27899–27909 (2016).
    [PubMed]
  27. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
    [PubMed]
  28. M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
    [PubMed]
  29. H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
    [PubMed]
  30. K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
    [PubMed]

2017 (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).

2016 (1)

2015 (1)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

2014 (1)

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

2012 (1)

A. Bleyer and H. G. Welch, “Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence,” N. Engl. J. Med. 367(21), 1998–2005 (2012).
[PubMed]

2010 (1)

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

2009 (1)

2008 (1)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[PubMed]

2003 (2)

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

2002 (5)

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41(28), 6030–6035 (2002).
[PubMed]

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
[PubMed]

2001 (1)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

2000 (2)

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

S. S. Ulyanov and V. V. Tuchin, “Use of low-coherence speckled speckles for bioflow measurements,” Appl. Opt. 39(34), 6385–6389 (2000).
[PubMed]

1999 (2)

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4(1), 106–124 (1999).
[PubMed]

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

1996 (1)

E. F. Conant and A. D. Maidment, “Breast cancer imaging,” Sci. Med. (Phila.) 3(1), 22–31 (1996).

1994 (1)

S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).

1993 (2)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

1992 (1)

R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
[PubMed]

1991 (2)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
[PubMed]

1987 (1)

E. A. Sickles, “Computed tomography scanning, transillumination, and magnetic resonance imaging of the breast,” Recent Results Cancer Res. 105, 31–36 (1987).
[PubMed]

1985 (1)

B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
[PubMed]

1982 (1)

L. Mahoney and A. Csima, “Efficiency of palpation in clinical detection of breast cancer,” Can. Med. Assoc. J. 127(8), 729–730 (1982).
[PubMed]

Agdarov, S.

Alizad, A.

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

Backhaus, J.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[PubMed]

Ballard-Barbash, R.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Baum, J.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Beiderman, Y.

Bentley, R.

K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Bird, R. E.

R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
[PubMed]

Bleyer, A.

A. Bleyer and H. G. Welch, “Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence,” N. Engl. J. Med. 367(21), 1998–2005 (2012).
[PubMed]

Boring, C. C.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Brem, R. F.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Bryan, L.

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

Burshtein, N.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

Butler, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Carney, P. A.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Chan, B. K. S.

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

Chang, R. F.

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

Chen, D. R.

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

Chin, L.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Conant, E. F.

E. F. Conant and A. D. Maidment, “Breast cancer imaging,” Sci. Med. (Phila.) 3(1), 22–31 (1996).

Csima, A.

L. Mahoney and A. Csima, “Efficiency of palpation in clinical detection of breast cancer,” Can. Med. Assoc. J. 127(8), 729–730 (1982).
[PubMed]

Cutter, G.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Davis, J. L.

B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
[PubMed]

DeSantis, C.

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

Drexler, B.

B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
[PubMed]

Duck, F. A.

H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
[PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Ernster, V.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Fatemi, M.

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

Feuer, E. J.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Flanders, W. D.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Garcia, J.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[PubMed]

Geller, B.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Gingold, S.

Greenleaf, J. F.

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

Heise, H. M.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[PubMed]

Helfand, M.

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

Hoffmeister, J.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Horovitz, I.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

Humphrey, L. L.

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

Humphrey, V. F.

H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
[PubMed]

Jemal, A.

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

Kaplan, S.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Kennedy, B. F.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Kennedy, K. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Kerlikowske, K.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Kolb, T. M.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
[PubMed]

Kondepati, V. R.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[PubMed]

Ku, G.

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Latham, B.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Lechner, M.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Li, J.

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Lichy, J.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
[PubMed]

Ma, J.

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

Mahoney, L.

L. Mahoney and A. Csima, “Efficiency of palpation in clinical detection of breast cancer,” Can. Med. Assoc. J. 127(8), 729–730 (1982).
[PubMed]

Maidment, A. D.

E. F. Conant and A. D. Maidment, “Breast cancer imaging,” Sci. Med. (Phila.) 3(1), 22–31 (1996).

Malvin, K.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Mandelson, M. T.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Margalit, I.

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

McLaughlin, R. A.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Mico, V.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[PubMed]

Moon, W. K.

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

Naul, L. G.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Newhouse, J. H.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
[PubMed]

Nightingale, K.

K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Rosenberg, R.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Sampson, D. D.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Saunders, C. M.

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Schofield, G.

B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
[PubMed]

Shah, N.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Sickles, E. A.

E. A. Sickles, “Computed tomography scanning, transillumination, and magnetic resonance imaging of the breast,” Recent Results Cancer Res. 105, 31–36 (1987).
[PubMed]

Sirkis, T.

Souders, S.

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Starritt, H. C.

H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
[PubMed]

Taplin, S. H.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Teicher, M.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[PubMed]

Timmel, M. J.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Tong, T.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Trahey, G.

K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Tuchin, V. V.

S. S. Ulyanov and V. V. Tuchin, “Use of low-coherence speckled speckles for bioflow measurements,” Appl. Opt. 39(34), 6385–6389 (2000).
[PubMed]

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4(1), 106–124 (1999).
[PubMed]

S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).

Ulyanov, S. S.

S. S. Ulyanov and V. V. Tuchin, “Use of low-coherence speckled speckles for bioflow measurements,” Appl. Opt. 39(34), 6385–6389 (2000).
[PubMed]

S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).

Urban, N.

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

Wallace, T. W.

R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
[PubMed]

Wang, L. V.

Welch, H. G.

A. Bleyer and H. G. Welch, “Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence,” N. Engl. J. Med. 367(21), 1998–2005 (2012).
[PubMed]

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).

Wold, L. E.

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

Woolf, S. H.

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

Wu, W. J.

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

Wun, L. M.

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

Yankaskas, B. C.

R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
[PubMed]

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

Zalevsky, Z.

Zimnyakov, D. A.

S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).

AJR Am. J. Roentgenol. (1)

R. F. Brem, J. Baum, M. Lechner, S. Kaplan, S. Souders, L. G. Naul, and J. Hoffmeister, “Improvement in Sensitivity of Screening Mammography with Computer-Aided Detection: A Multiinstitutional Trial,” AJR Am. J. Roentgenol. 181(3), 687–693 (2003).
[PubMed]

Anal. Bioanal. Chem. (1)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[PubMed]

Ann. Intern. Med. (2)

L. L. Humphrey, M. Helfand, B. K. S. Chan, and S. H. Woolf, “Breast Cancer Screening: A Summary of the Evidence for the U.S. Preventive Services Task Force,” Ann. Intern. Med. 137(5 Part 1), 347–360 (2002).
[PubMed]

K. Kerlikowske, P. A. Carney, B. Geller, M. T. Mandelson, S. H. Taplin, K. Malvin, V. Ernster, N. Urban, G. Cutter, R. Rosenberg, and R. Ballard-Barbash, “Performance of screening mammography among women with and without a first-degree relative with breast cancer,” Ann. Intern. Med. 133(11), 855–863 (2000).
[PubMed]

Appl. Opt. (2)

CA Cancer J. Clin. (1)

C. DeSantis, J. Ma, L. Bryan, and A. Jemal, “Breast cancer statistics, 2013,” CA Cancer J. Clin. 64(1), 52–62 (2014).
[PubMed]

Can. Med. Assoc. J. (1)

L. Mahoney and A. Csima, “Efficiency of palpation in clinical detection of breast cancer,” Can. Med. Assoc. J. 127(8), 729–730 (1982).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for Breast Cancer Detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

IEEE Trans. Med. Imaging (1)

M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-Acoustic Tissue Mammography,” IEEE Trans. Med. Imaging 21(1), 1–8 (2002).
[PubMed]

J. Biomed. Opt. (2)

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[PubMed]

V. V. Tuchin, “Coherent optical techniques for the analysis of tissue structure and dynamics,” J. Biomed. Opt. 4(1), 106–124 (1999).
[PubMed]

J. Natl. Cancer Inst. (1)

E. J. Feuer, L. M. Wun, C. C. Boring, W. D. Flanders, M. J. Timmel, and T. Tong, “The Lifetime Risk of Developing Breast Cancer,” J. Natl. Cancer Inst. 85(11), 892–897 (1993).
[PubMed]

N. Engl. J. Med. (1)

A. Bleyer and H. G. Welch, “Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence,” N. Engl. J. Med. 367(21), 1998–2005 (2012).
[PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).

Opt. Eng. (1)

S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. 33(10), 3189–3201 (1994).

Opt. Express (2)

Phys. Med. Biol. (1)

H. C. Starritt, F. A. Duck, and V. F. Humphrey, “Forces acting in the direction of propagation in pulsed ultrasound fields,” Phys. Med. Biol. 36(11), 1465–1474 (1991).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[PubMed]

Proc. SPIE (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” Proc. SPIE 1888, 500–510 (1993).

Radiology (3)

B. Drexler, J. L. Davis, and G. Schofield, “Diaphanography in the diagnosis of breast cancer,” Radiology 157(1), 41–44 (1985).
[PubMed]

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225(1), 165–175 (2002).
[PubMed]

R. E. Bird, T. W. Wallace, and B. C. Yankaskas, “Analysis of cancers missed at screening mammography,” Radiology 184(3), 613–617 (1992).
[PubMed]

Recent Results Cancer Res. (1)

E. A. Sickles, “Computed tomography scanning, transillumination, and magnetic resonance imaging of the breast,” Recent Results Cancer Res. 105, 31–36 (1987).
[PubMed]

Sci. Med. (Phila.) (1)

E. F. Conant and A. D. Maidment, “Breast cancer imaging,” Sci. Med. (Phila.) 3(1), 22–31 (1996).

Sci. Rep. (1)

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5, 15538 (2015).
[PubMed]

Ultrason. Imaging (2)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[PubMed]

K. Nightingale, R. Bentley, and G. Trahey, “Observations of Tissue Response to Acoustic Radiation Force: Opportunities for Imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Ultrasound Med. Biol. (1)

R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, “Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,” Ultrasound Med. Biol. 29(5), 679–686 (2003).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Over damped oscillation of the tested skin.
Fig. 2
Fig. 2 Plastic ball detection model.
Fig. 3
Fig. 3 Implemented optical configuration for breast cancer simulated remote measurement (a) Sketch of the optical system. (b) The breast cancer simulated experimental setup configuration.
Fig. 4
Fig. 4 Damping duration of skin free oscillation vs. stimulation frequency.
Fig. 5
Fig. 5 Example of free damped oscillation of the skin.
Fig. 6
Fig. 6 Correlation and linear regression between the skin free damped oscillation duration and plastic ball diameter.
Fig. 7
Fig. 7 Correlation and linear regression between the area S and plastic ball diameter.
Fig. 8
Fig. 8 Correlation and linear regression between parameter μ and plastic ball diameter.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x ¨ + b x ˙ + k x = 0
x ( t ) = C 1 e r 1 t + C 2 e r 2 t
r 1 = b + b 2 4 k 2 r 2 = b b 2 4 k 2
μ = 2 S A m τ .
A = S τ
t g ( φ ) = A m τ .

Metrics